链接
题意
一棵树,给你若干边和若干点的最近公共祖先,求合法的树有多少个
思路
看题后没什么思路的动归。 用 dp[root][mask] 表示 root为根,选择 mask 的二进制中那些点的子树的状态。所以转移方程就是 dp[root][mask] += dp[subRoot][subMask] * dp[root][subMask ^ mask]。其中的subRoot表示mask的一颗子树的根,subMask是这颗子树中的点, subMask ^ mask 就是 mask 中出去 subMask 这个子树的其余点。最后的答案就是 dp[0]](1 << n) - 1。细节见代码注释。
代码
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <vector>
#define INF 99999999
#define LL long long
#define MAXN 100005
using namespace std;
int n, m, p;
bool vis[15][15];
LL dp[15][1 << 15];
int a[105], b[105], c[105];
bool isInside(int x, int mask){
return (mask >> x) & 1;
}
LL work(int root, int mask){
if (dp[root][mask] != -1){
return dp[root][mask];
}
//去除根节点
int sub = mask - (1 << root);
int x = 0;
//保证子树中有点
while (true){
if (isInside(x, sub)) break;
++x;
if (x >= n) break;
}
LL ans = 0;
//在sub枚举子树
for (int subMask = sub; subMask; subMask = (subMask - 1) & sub){
if (!isInside(x, subMask)) continue;
bool flag = false;
for (int i = 0; i < n; ++i){
if (i == root) continue;
for (int j = 0; j < n; ++j){
if (j == root) continue;
//i与j有边相连却不在同一颗子树中
if (vis[i][j] && (isInside(i, subMask) ^ isInside(j, subMask))){
flag = true;
break;
}
}
if (flag) break;
}
if (flag) continue;
int cnt = 0, son;
for (int i = 0; i < n; ++i){
//root与该子树存在多条边相连
if (vis[root][i] && isInside(i, subMask)){
++cnt;
son = i;
}
}
if (cnt > 1) continue;
for (int i = 1; i <= p; ++i){
//LCA是根,但两个后代都在子树中
if (c[i] == root && isInside(a[i], subMask) && isInside(b[i], subMask)){
flag = true;
break;
}
//LCA在子树中,但有后代不在子树中
if (isInside(c[i], subMask) && !(isInside(a[i], subMask) && isInside(b[i], subMask))){
flag = true;
break;
}
}
if (flag) continue;
if (cnt != 1){
for (int i = 0; i < n; ++i){
if (!isInside(i, subMask)) continue;
ans += work(i, subMask) * work(root, mask ^ subMask);
}
}
else{
ans += work(son, subMask) * work(root, mask ^ subMask);
}
}
return dp[root][mask] = ans;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
#endif // ONLINE_JUDGE
//dp[root][mask] += dp[subRoot][subMask] * dp[root][mask ^ subMask];
int x, y;
scanf("%d%d%d", &n, &m, &p);
for (int i = 1; i <= m; ++i){
scanf("%d%d", &x, &y);
vis[x - 1][y - 1] = true;
vis[y - 1][x - 1] = true;
}
for (int i = 1; i <= p; ++i){
scanf("%d%d%d", &a[i], &b[i], &c[i]);
--a[i], --b[i], --c[i];
}
memset(dp, -1, sizeof(dp));
for (int i = 0; i < n; ++i){
dp[i][1 << i] = 1;
}
LL ans = work(0, (1 << n) - 1);
printf("%I64d\n", ans);
}