一、模型微调技术详解
1. 全参数微调 vs 参数高效微调
全参数微调 (Full Fine-tuning)
Python
# Hugging Face全参数微调示例
from transformers import AutoModelForSequenceClassification, TrainingArguments
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
args = TrainingArguments(
output_dir="output",
per_device_train_batch_size=32,
num_train_epochs=3
)
trainer = Trainer(model, args, train_dataset)
trainer.train()
痛点:显存占用大(如Llama2-7B需4×24G GPU)
参数高效微调 (PEFT)

Python
# LoRA微调实战
from peft import LoraConfig, get_peft_model
config = LoraConfig(
r=8,
target_modules=["q_proj", "v_proj"],
lora_alpha=32
)
model = get_peft_model(base_model

最低0.47元/天 解锁文章
1119

被折叠的 条评论
为什么被折叠?



