LeetCode----best-time-to-buy-and-sell-stock-iii

本文介绍了一种算法来确定股票交易的最佳时机,允许最多进行两次交易,并确保每次卖出后才能再次购买。通过波峰波谷法减少搜索空间,提高算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述


Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at mosttwo transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

----------------------------------------------------------------------------------------------------------------
思路:循环利用解决best-time-to-buy-and-sell-stock-i(一次交易的最大收益)的方法,将数组分为front和back两部分并分别求其中的一个最大收益作和。
           每次更新保留较大收益。

代码实现:

1
class Solution {
2
public:
3
    int maxProfit(vector<int> &prices) {
4
        if (prices.size()<=1)
5
            return 0;
6
        int mx = 0;//mx记录当前最大收益
7
        vector<int>::iterator iter;
8
        for (iter=prices.begin(); iter!=prices.end(); ++iter){
9
            //将数组分为前后两部分并分别计算最大收益
10
            vector<int> front(prices.begin(), iter+1);
11
            vector<int> back(iter+1, prices.end());
12
            int a = maxP(front);
13
            int b = maxP(back);
14
            mx =max(a+b, mx); //更新当前最大收益
15
        }
16
        return mx;
17
    }
18
    int maxP(vector<int> &price){//处理一次交易最大收益
19
        if (price.size() <= 1)
20
            return 0;
21
        int mx = 0;
22
        for (int i=0; i<price.size()-1; ++i){
23
            for (int j=i+1; j<price.size(); ++j){
24
                mx = max(mx, price[j]-price[i]);
25
            }
26
        }
27
        return mx;
28
    }
29
};
您的代码已保存
网上 波峰波谷 解答:

classSolution {
public:
    intmaxProfit(vector<int> &prices) {
        if(prices.size() < 2)
            return0;
        constint n = prices.size();
        vector<int> f(n, 0);
        vector<int> g(n, 0);
        for(inti = 1, valley = prices[0]; i < n; ++i) {
            valley = min(valley, prices[i]);
            f[i] = max(f[i - 1], prices[i] - valley);
        }
        for(inti = n - 2, peak = prices[n - 1]; i >= 0; --i) {
            peak = max(peak, prices[i]);
            g[i] = max(g[i], peak - prices[i]);
        }
        intmax_profit = 0;
        for(inti = 0; i < n; ++i)
            max_profit = max(max_profit, g[i] + f[i]);
         
        returnmax_profit;
    }
};
------------------------------------------------------------
------------------------------------------------------------
class Solution {
public:
    int maxProfit(vector<int> &prices) {
        //You may complete at most two transactions.(you must sell the stock before you buy again)
        //方式一:爆搜 (630ms 8552k)
        /*
        int len=prices.size();
        int maxPro=0;
        for(int i=0;i<len;i++){ //以i作为两次交易的分界线
            int max1=0,max2=0;
            for(int j=0;j<=i;j++){
                for(int k=j+1;k<=i;k++){
                    int val = prices[k]-prices[j];
                    if(val>max1){
                        max1=val;
                    }
                }
            }
            for(int j=i;j<len;j++){
                for(int k=j+1;k<len;k++){
                    int val = prices[k]-prices[j];
                    if(val>max2){
                        max2=val;
                    }
                }
            }
            if(max1+max2>maxPro)maxPro = max1+max2;
        }
        return maxPro;
        */
         
         
        //方式二:波峰波谷检测法,可以减小不必要的搜索空间,相比于第一种效率提升了不少    (180ms 8568k)
        int len = prices.size();
        if(len<=1)return 0;
        vector<int> flag(len,0);
        for(int i=1;i<len-1;i++){
            if(prices[i]>prices[i-1]&&prices[i]>=prices[i+1])flag[i]=1;  //标记为波峰(比较时注意相等情况)
            if(prices[i]<prices[i-1]&&prices[i]<=prices[i+1])flag[i]=-1;  //标记为波谷
        }
        if(prices[0]<=prices[1])flag[0]=-1;
        if(prices[len-1]>prices[len-2])flag[len-1]=1;
        //搜索
        int maxPro=0;
        for(int k=0;k<len;k++){
            int max1=0,max2=0;
            for(int i=0;i<=k;i++){
                if(flag[i]==-1){
                    for(int j=i+1;j<=k;j++){
                        if(flag[j]==1){
                            int val = prices[j]-prices[i];
                            if(val>max1)max1 = val;
                        }
                    }
                }
            }
            for(int i=k;i<len;i++){
                if(flag[i]==-1){
                    for(int j=i+1;j<len;j++){
                        if(flag[j]==1){
                            int val = prices[j]-prices[i];
                            if(val>max2)max2 = val;
                        }
                    }
                }
            }
            int val = max1+max2;
            if(val>maxPro)maxPro = val;
        }
        return maxPro;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值