915. Partition Array into Disjoint Intervals

本文介绍了一种有效的数组分区算法,该算法将数组A分为两个连续的子数组left和right,确保left中的每个元素都小于等于right中的每个元素,同时使left的大小尽可能小。通过示例说明了算法的工作原理,如[5,0,3,8,6]被分为left=[5,0,3]和right=[8,6]。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an array A, partition it into two (contiguous) subarrays left and right so that:

  • Every element in left is less than or equal to every element in right.
  • left and right are non-empty.
  • left has the smallest possible size.

Return the length of left after such a partitioning.  It is guaranteed that such a partitioning exists.

 

Example 1:

Input: [5,0,3,8,6]
Output: 3
Explanation: left = [5,0,3], right = [8,6]

Example 2:

Input: [1,1,1,0,6,12]
Output: 4
Explanation: left = [1,1,1,0], right = [6,12]

 

Note:

  1. 2 <= A.length <= 30000
  2. 0 <= A[i] <= 10^6
  3. It is guaranteed there is at least one way to partition A as described.
public int partitionDisjoint(int[] A) {
        int sizeA = A.length;
        PriorityQueue<Integer> minHeap = new PriorityQueue<>();
        PriorityQueue<Integer> maxHeap=new PriorityQueue<Integer>(sizeA, new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o2-o1;
            }
        });

        for (int i = 0; i < sizeA; i++) {
            if (i == 0) maxHeap.add(A[i]);
            else minHeap.add(A[i]);
        }

        // left <= right
        for (;;) {
            int topMinHeap = minHeap.peek();
            int topMaxHeap = maxHeap.peek();
            if (topMaxHeap <= topMinHeap) {
                return maxHeap.size();
            } else {
                int temp = A[maxHeap.size()];
                maxHeap.add(temp);
                minHeap.remove(temp);
            }
        }
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值