bzoj1013(高斯消元)

此博客介绍了一道名为“球形空间产生器”的竞赛题目,该题要求通过已知的n+1个球面上的点坐标来计算n维空间中球心的具体坐标。文章提供了使用高斯消元法解决该问题的详细代码实现。


1013: [JSOI2008]球形空间产生器sphere

Time Limit: 1 Sec   Memory Limit: 162 MB
Submit: 4375   Solved: 2295
[ Submit][ Status][ Discuss]

Description

  有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球
面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

Input

  第一行是一个整数n(1<=N=10)。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点
后6位,且其绝对值都不超过20000。

Output

  有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

Sample Input

2
0.0 0.0
-1.0 1.0
1.0 0.0

Sample Output

0.500 1.500

HINT

  提示:给出两个定义:1、 球心:到球面上任意一点距离都相等的点。2、 距离:设两个n为空间上的点A, B

的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 +

… + (an-bn)^2 )


解题思路:高斯消元模板题。


#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n;
double c[13][13];
double g[12];
double a[13][13];
  
void work()
  {
     for ( int i=1;i<=n;++i)
       {
         double opp=1/c[i][i];
         for ( int j=i;j<=n+1;++j)
          {
            c[i][j]*=opp;
          }
         for ( int j=i+1;j<=n;++j)
          {
           double opp=-1/c[j][i];
           for ( int k=i;k<=n+1;++k)
             {
                 c[j][k]=c[j][k]*opp+c[i][k];
             }
          }
        }
     for ( int i=n-1;i>=1;--i)
      {
         for ( int k=i+1;k<=n;++k)
          {
           c[i][n+1]-=c[k][n+1]*c[i][k];
          }
       }
  }
  
int main()
{
     scanf ( "%d" ,&n);
     for ( int i=1;i<=n+1;++i)
      {
         for ( int j=1;j<=n;++j)
          scanf ( "%lf" ,&a[i][j]);
      }
     g[n+1]=0;
     for ( int i=1;i<=n;++i)
      g[i]=-2*a[1][i],g[n+1]-=a[1][i]*a[1][i];
     for ( int i=2;i<=n+1;++i)
      {
         c[i-1][n+1]=0;
         for ( int j=1;j<=n;++j)
          {
           c[i-1][j]=-2*a[i][j]-g[j];
           c[i-1][n+1]-=a[i][j]*a[i][j];
          }
         c[i-1][n+1]=c[i-1][n+1]-g[n+1];
      }
     work();
     for ( int i=1;i<=n-1;++i)
      {
         printf ( "%.3lf " ,c[i][n+1]);
      }
     printf ( "%.3lf" ,c[n][n+1]);
}


本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### 题目内容 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在被困在了这个n维球体中,仅知道球面上n + 1个点的坐标,需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器[^1][^2]。 ### 解题思路 - **原理依据**:根据球心的定义,球心到球面上任意一点距离都相等。设球心坐标为\((x_1,x_2,\cdots,x_n)\),球面上一点坐标为\((a_1,a_2,\cdots,a_n)\),两点距离公式为\(dist = \sqrt{(x_1 - a_1)^2+(x_2 - a_2)^2+\cdots+(x_n - a_n)^2}\)。 - **构建方程**:设球面上\(n + 1\)个点的坐标分别为\((a_{i1},a_{i2},\cdots,a_{in})\),\(i = 1,2,\cdots,n + 1\)。以第一个点和其他点为例,根据球心到各点距离相等,可得: \((x_1 - a_{11})^2+(x_2 - a_{12})^2+\cdots+(x_n - a_{1n})^2=(x_1 - a_{21})^2+(x_2 - a_{22})^2+\cdots+(x_n - a_{2n})^2\) 展开式子: \(x_1^2 - 2a_{11}x_1+a_{11}^2+x_2^2 - 2a_{12}x_2+a_{12}^2+\cdots+x_n^2 - 2a_{1n}x_n+a_{1n}^2=x_1^2 - 2a_{21}x_1+a_{21}^2+x_2^2 - 2a_{22}x_2+a_{22}^2+\cdots+x_n^2 - 2a_{2n}x_n+a_{2n}^2\) 消去\(x_1^2,x_2^2,\cdots,x_n^2\)后可得: \(2(a_{21}-a_{11})x_1 + 2(a_{22}-a_{12})x_2+\cdots+2(a_{2n}-a_{1n})x_n=a_{21}^2 - a_{11}^2+a_{22}^2 - a_{12}^2+\cdots+a_{2n}^2 - a_{1n}^2\) 同理,用第一个点和第\(i\)个点\((i = 3,\cdots,n + 1)\)可得到\(n\)个线性方程,构成一个\(n\)一次方程组。 - **求解方程组**:使用高斯消法求解这个\(n\)一次方程组,得到的解就是球心的\(n\)维坐标。 ### 代码实现 ```python n = int(input()) points = [] for _ in range(n + 1): points.append(list(map(float, input().split()))) # 构建方程组的系数矩阵和常数项 a = [[0] * (n + 1) for _ in range(n)] b = [0] * n for i in range(n): for j in range(n): a[i][j] = 2 * (points[i + 1][j] - points[0][j]) b[i] += points[i + 1][j] ** 2 - points[0][j] ** 2 # 高斯消 for i in range(n): # 选主 max_row = i for j in range(i + 1, n): if abs(a[j][i]) > abs(a[max_row][i]): max_row = j a[i], a[max_row] = a[max_row], a[i] b[i], b[max_row] = b[max_row], b[i] # 消 for j in range(i + 1, n): factor = a[j][i] / a[i][i] for k in range(i, n): a[j][k] -= factor * a[i][k] b[j] -= factor * b[i] # 回代求解 x = [0] * n for i in range(n - 1, -1, -1): s = 0 for j in range(i + 1, n): s += a[i][j] * x[j] x[i] = (b[i] - s) / a[i][i] # 输出结果 print(" ".join(map(lambda num: "{:.3f}".format(num), x))) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值