PCIE SRIOV虚拟化技术

本文介绍SR-IOV技术原理及其在QEMU/KVM虚拟化环境下的应用。涵盖SR-IOV的基本结构、VFIO框架、IOMMU作用以及PCIe设备直通的数据面加速机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景

SR-IOV(Single Root I/O Virtualization)是由PCI-SIG组织定义的PCIe规范的扩展规范《Single Root I/O Virtualization and Sharing Specification》,目的是通过提供一种标准规范,为VM(虚拟机)提供独立的内存空间、中断、DMA数据流,当前最新版本为1.1。

图1.1

IO虚拟化有软件模拟、基于virtio的半虚拟化和设备直通三种方式,见图1.1,其中设备直通实现了数据面加速,允许物理PCIe设备可以直接访问虚拟机的GuestOS中运行相应驱动分配的物理地址(GPA)。

   SR-IOV的出现,支持了单个物理PCIe设备虚拟出多个虚拟PCIe设备,然后将虚拟PCIe设备直通到各虚拟机,以实现单个物理PCIe设备支撑多虚拟机的应用场景,如图1.2。

图1.2

二、SR-IOV原理

2.1 硬件实现

2.1.1 SR-IOV基本结构

SR-IOV是在PCIe规范的基础上实现的,SR-IOV协议引入了两种类型功能的概念:物理功能 (Physical Function, PF)和虚拟功能 (Virtual Function, VF),基本结构见图2.1.1。

图2.1.1

PF用于支持 SR-IOV 功能的 PCI 功能,如 SR-IOV 规范中定义,PF 包含 SR-IOV 功能配置结构体,用于管理 SR-IOV 功能。PF 是全功能的 PCIe 功能,可以像其他任何 PCIe 设备一样进行发现、管理和处理。PF 拥有完全配置资源,可以用于配置或控制 PCIe 设备。

VF是与PF关联的一种功能,是一种轻量级 PCIe 功能,可以与物理功能以及与同一物理功能关联的其他 VF 共享一个或多个物理资源。VF 仅允许拥有用于其自身行为的配置资源。

2.1.2 VF的BAR空间资源

 VF的BAR空间是PF的BAR空间资源中规划的一部分,VF不支持IO空间,所以VF的BAR空间也需要映射到系统内存,VF的BAR空间的物理资源排布如图2.1.2:

图2.1.2

2.1.3 PF的SR-IOV Extended Capabilities 配置

PF的PCIe扩展配置空间 SR-IOV Extended Capability支持对SR-IOV功能进行配置,如图2.1.3:

图2.1.3

其中SR-IOV Control 字段的bit0位是SR-IOV的使能位,默认为0,表示关闭,如果需要开启SR-IOV功能,需要配置为1。

TotalVFs字段表示PCIe Device支持VF的数量。

NumVFs字段表示开启VF的数量,此值不应超过PCIe Device支持的VF的数量TotalVFs的值。

First VF Offset字段表示第一个各VF相对PF的Routing ID(即Bus number、Device number、Function number)的偏移量。

VF Stride字段表示相邻两个VF的Routing ID的偏移量。

其他字段含义详见《Single Root I/O Virtualization and Sharing Specification Revision 1.1》。

2.2 软件支持

Linux系统下,基于SR-IOV有三种应用场景:HostOS使用PF、HOstOS使用VF、将VF直通到VM(虚拟机),见图2.2.1:

图2.2.1

Linux系统中PCI驱动框架drivers/pci/iov.c提供了一系列对SR-IOV Extended Capability的配置接口函数,PCIe Device需要有相应的PF驱动和VF驱动,PF驱动支持配置SR-IOV,VF驱动需要实现相应的PCIe Device的业务功能(例如NIC或GPU),VFIO中的vfio-pic是一个简易符合VFIO框架PCIe驱动。

三、基于SR-IOV的IO虚拟化

3.1 基于QEMU/KVM的PCIe设备直通框架

在QEMU/KVM的虚拟化架构下,PCIe设备直通的软硬件系统架构由下往上有如下几部分(见图3.1):

l PCIe Device(支持SR-IOV功能)

l IOMMU

l VFIO

l Hypervisor(QEMU/KVM)

l VF Driver(运行在GuestOS中)

图3

3.1.1 IOMMU

IOMMU(I/O Memory Management Unit)是一个内存管理单元,主要针对外设访问系统内存市进行内存管理,像intel VT-d、AMD的IOMMU及ARM的SMMU都具有相同功能。IOMMU支持PCIe Device虚拟化的两个基础功能:地址重映射中断重映射

3.1.1.1 DMA物理地址重映射

(DMA Remapping )

1)地址空间隔离

在没有iommu的时候,用户态驱动可以通过设备dma可以访问到机器的全部的地址空间,如何保护机器物理内存区对于用户态驱动框架设计带来挑战。引入iommu以后,iommu通过控制每个设备dma地址到实际物理地址的映射转换,可以实现地址空间上的隔离,使设备只能访问规定的内存区域,见图3.1.1.1.1。

图3.1.1.1.1

2)GPA(虚拟机物理地址) --> HPA(宿主机物理地址)

物理PCI设备通过直通的方式进入到虚拟机的客户机时,客户机设备驱动使用透传设备的DMA访问虚拟机内存物理地址时,IOMMU会进行 GPA-->HPA的转换,详细转换细节在下一章节分析。

3.1.1.2 中断重映射

以Intel VT-d为例,提出了两个机制支持中断重映射:

引入两种中断请求格式

兼容模式和重映射模式,Bit4位为0来表征为不可重映射中断,Bit4位为

1来表征为可重映射中断,见图3.1.1.2.1和图3.1.1.2.2。

图3.1.1.2.1

图3.1.1.2.2

引入Interrupt Remapping Table Entry (IRTE)

Interrupt Remapping Table Entry是一个二级表,需要先通过Interrupt Remapping Table Address Register来找到Interrupt Remapping Table Entry所在的地址,Interrupt Remapping Table Entry的格式如图3.1.1.2.3:

图3.1.1.2.3

IOMMU中断重映射的实质是将来自PCIe设备的中断(包括来自IOAPIC和PCIe设备的MSI/MSI-X等)拦截下来判断是否为重映射中断,如果是重映射中断会通过查询中断映射表(Interrupt Remapping Table Entry)找到真正的中断路由信息然后发送给物理CPU。

3.1.2 VFIO

VFIO(Virtual Function I/O)是基于IOMMU为HostOS的用户空间暴露PCIe设备的配置空间和DMA。VFIO的组成主要有以下及部分,见图3.1.2.1:

图3.1.2.1

l VFIO Interface:

VFIO通过设备文件向用户空间提供统一访问接口:

• Container文件描述符:打开/dev/vfio字符设备可得

• IOMMU group文件描述符:打开/dev/vfio/N文件可得

• Device文件描述符:向IOMMU group文件描述符发起相关ioctl可得

l vfio_iommu_type1_driver:

为VFIO提供了IOMMU重映射驱动,向用户空间暴露DMA操作。

l vfio-pci:

vfio支持pci设备直通时以vfio-pci作为pci设备驱动挂载到pci总线, 将pci设备io配置空间、中断暴露到用户空间。

3.1.3 QEMU/KVM PCI设备直通

QEMU/KVM 的PCI设备直通QEMU的核心工作主要有两部分:

1) 读取PCIe设备信息

通过VFIO接口读取PCIe设备的配置空间和DMA信息,

2) 为虚拟机创建虚拟PCIe设备

为虚拟机创建虚拟PCIe设备,虚拟PCIe设备的寄存器规划和DMA信息是物理PCIe设备在虚拟机中的映射。

QEMU中PCI设备直通时vfio-pci注册流程见图3.1.3.1:

图3.1.3.1

QEMU中PCI设备直通时vfio-pci初始化流程见图3.1.3.2:

图3.1.3.2

3.2 PCI设备直通数据面加速

PCI设备直通时,GuestOS中的设备驱动操作虚拟PCI设备的DMA时,QEMU会将上述操作通过VFIO接口下发给物理PCI设备的DMA,物理设备DMA收到GuestOS中的物理地址GPA,通过IOMMU的映射,找到Host主机物理内存的物理地址HPA,达到物理PCI设备直接访问GuestOS中的GPA,从而达到数据数据面加速。

3.2.1 GPA->HPA的映射过程

对于直通的设备,QEMU创建虚拟机时需要两方面的地址映射,见图3.2.1.1:

1)VM在创建时GuestOS的内存需要QEMU调用KVM最终通过EPT和MMU建立GVA->GPA->HPA的映射;

2)QEMU进行VM的虚拟PCI设备初始化时,会将HVA和GPA下发给IOMMU,

让IOMMU建立GPA到HPA的映射关系。

当GuestOS中直通设备的驱动分配内存并配置DMA时,QEMU通过VFIO接口将GPA下发到PCI Device的DMA,DMA读取数据时经由IOMMU映射,找到相应的HPA。

虚拟化环境中,SR-IOV技术能够显著提高PCIe设备的性能表现,并且有效降低CPU的处理负担。要实现这一点,可以按照以下步骤进行操作: 参考资源链接:[ASAP2:虚拟化技术优化 PCIe 设备性能与DPDK/RDMA应用](https://wenku.youkuaiyun.com/doc/40d14dk53s?spm=1055.2569.3001.10343) 1. 确认硬件支持:首先,需要确保你的服务器硬件支持SR-IOV。具体来说,网卡必须支持此功能,并在BIOS设置中启用I/O虚拟化。 2. 配置SR-IOV:在Linux系统中,需要加载对应的内核模块(如ixgbevf for Intel X520网卡),然后使用echo命令开启SR-IOV模式,并设定虚拟功能(VF)的数量。例如,echo '8' > /sys/bus/pci/devices/0000:02:00.0/sriov_numvfs,这会将物理功能(PF)分配出8个VF。 3. 虚拟机设置:在虚拟化管理程序中(如KVM),为虚拟机配置相应的VF。在虚拟机的配置文件中指定使用SR-IOV的VF。 4. 配置DPDK/RDMA:安装并配置DPDK库,以实现用户空间的数据包处理。对于RDMA,设置相应的支持库和驱动,启用InfiniBand或RoCE以利用其高速直接内存访问的能力。 5. 性能优化:通过监测工具,如iperf或者netperf,来测试网络性能。如果发现瓶颈,可以调整vSwitch设置,或者更改网络接口的队列数量和中断亲和性来优化性能。 6. 监控与调整:利用系统监控工具持续观察CPU和网络性能指标,确保网络流量得到正确处理,同时CPU开销保持在合理范围内。 以上步骤涉及的技术和工具在《ASAP2:虚拟化技术优化 PCIe 设备性能与DPDK/RDMA应用》中有详细讲解。本书不仅覆盖了虚拟化技术中的关键技术,如SR-IOV和DPDK,还提供了应用直通和裸金属性能提升的实战案例分析,帮助读者全面理解和掌握如何在虚拟化环境中优化PCIe设备性能,降低CPU开销。 参考资源链接:[ASAP2:虚拟化技术优化 PCIe 设备性能与DPDK/RDMA应用](https://wenku.youkuaiyun.com/doc/40d14dk53s?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值