问题 A: Assignment Algorithm

问题 A: Assignment Algorithm

时间限制: 1 Sec  内存限制: 512 MB

题目描述

A low-budget airline is designing a sophisticated algorithm that will assign more desirable seats to passengers who buy tickets earlier. Their airplane has r rows of seats, where r is an even integer. There are also 3 exit rows in the airplane; those rows do not contain any seats but only provide access to the emergency exits. One exit row is in the very front of the airplane (before the first row of seats), one in the very back (behind the last row of seats) and one right in the middle. The rows are numbered with integers 1 through r + 3 with row numbers increasing from the front to the back of the airplane. Rows numbered 1, r/2 + 2 and r + 3 are exit rows while all the other rows are seat rows.
The seating configuration is “3–3–3” — each seat row contains three groups of three seats with the passenger aisles between the groups. Seats in the same row are denoted with consecutive letters left to right corresponding to the pattern “ABC.DEF.GHI”.
When a passenger purchases a ticket, she is assigned a seat according to the following rules:
1. If there is an empty seat in a row directly after an exit row, all other rows are ignored in the following step (but they are not ignored when balancing the airplane in the last step).
2. first, we select a seat row with the largest number of empty seats. If there are multiple such rows,we select the one closest to an exit row (distance between rows a and b is simply |a − b|). If there are still multiple such rows, we select the one with the lowest number.
3. Now, we consider empty seats in the selected row and select one with the highest priority. Seat priorities, from highest to lowest are as follows:
(a) Aisle seats in the middle group (D or F).
(b) Aisle seats in the first and third group (C or G).
(c) Window seats (A or I).
(d) Middle seat in the middle group (E).
(e) Other middle seats (B or H).
If there are two empty seats with the same highest priority, we consider the balance of the entire airplane. The airplane’s left side contains all seats with letters A, B, C or D, while the right side contains all seats with letters F, G, H or I. We select an empty seat in the side with more empty seats. If both sides have the same number of empty seats, we select the seat in the left side of the airplane.
Some of the airplane’s seats are already reserved (possibly using a completely different procedure from the one described above). Determine the seats assigned to the next n passengers purchasing a ticket.

输入

The first line contains two integers r and n (2 ≤ r ≤ 50, 1 ≤ n ≤ 26) — the number of seat rows in the airplane (always an even integer) and the number of new passengers purchasing tickets. The following r + 3 lines contain the current layout of the airplane. The j-th line contains exactly 11 characters — the layout of the row j of the airplane. Exit rows and aisles are denoted with the “.” characters. The “#” character denotes a reserved seat, while the “-” character denotes a seat that is currently empty. You may assume there will be at least n empty seats in the airplane.

输出

Output r + 3 lines containing the final layout of the irplane. The layout should be exactly the same as in input with the following exception: the seat assigned to the j-th passenger purchasing a ticket should be denoted with the j-th lowercase letter of the English alphabet.

样例输入

2 17

...........

---.#--.---

...........

---.---.---

...........

样例输出

...........

hnd.#lb.fpj

...........

kqg.cma.eoi

...........





题目大意:

题意很恶心。。。



分析:

模拟就ok







AC代码:

#include<bits/stdc++.h>
#define lowbit(x) (x&-x)
#define gcd(a,b) __gcd(a,b)
#define mset(a,x) memset(a,x,sizeof(a))
#define FIN     freopen("input","r",stdin)
#define FOUT    freopen("output","w",stdout)
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
const double eps=1e-6;
const int MAX=1e5+10;
const int mod=1e9+7;
typedef long long ll;
using namespace std;
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
inline ll qpow(ll a,ll b){ll r=1,t=a; while(b){if(b&1)r=(r*t)%mod;b>>=1;t=(t*t)%mod;}return r;}
inline ll inv1(ll b){return qpow(b,mod-2);}
inline ll inv2(ll b){return b==1?1:(mod-mod/b)*inv2(mod%b)%mod;}
inline ll exgcd(ll a,ll b,ll &x,ll &y){if(!b){x=1;y=0;return a;}ll r=exgcd(b,a%b,y,x);y-=(a/b)*x;return r;}
int dir[4][2]={0,1,1,0,0,-1,-1,0};
int r,n;
char Map[105][105];
int cal(){
    int suml=0,sumr=0;
    for (int j=1;j<=r+3;j++){
        for (int k=0;k<5;k++){
            if(Map[j][k]=='-') suml++;
        }
    }
    for (int j=1;j<=r+3;j++){
        for (int k=6;k<11;k++){
            if(Map[j][k]=='-') sumr++;
        }
    }
    if (suml>=sumr) return 0;
    return 1;
}
void work(int Index,int i){
    int temp=cal();
    if(Map[Index][4]=='-'&&Map[Index][6]=='-'){
        if(temp==0) Map[Index][4]=i+'a';
        else Map[Index][6]=i+'a';
    }
    else if(Map[Index][4]=='-'||Map[Index][6]=='-'){
        if(Map[Index][4]=='-') Map[Index][4]=i+'a';
        else Map[Index][6]=i+'a';
    }
 
    else if(Map[Index][2]=='-'&&Map[Index][8]=='-'){
        if(temp==0) Map[Index][2]=i+'a';
        else Map[Index][8]=i+'a';
    }
    else if(Map[Index][2]=='-'||Map[Index][8]=='-'){
        if(Map[Index][2]=='-') Map[Index][2]=i+'a';
        else Map[Index][8]=i+'a';
    }
 
    else if(Map[Index][0]=='-'&&Map[Index][10]=='-'){
        if(temp==0) Map[Index][0]=i+'a';
        else Map[Index][10]=i+'a';
    }
    else if(Map[Index][0]=='-'||Map[Index][10]=='-'){
        if(Map[Index][0]=='-') Map[Index][0]=i+'a';
        else Map[Index][10]=i+'a';
    }
    else if(Map[Index][5]=='-') {Map[Index][5]=i+'a';}
 
    else if(Map[Index][1]=='-'&&Map[Index][9]=='-'){
        if(temp==0) Map[Index][1]=i+'a';
        else Map[Index][9]=i+'a';
    }
    else if(Map[Index][1]=='-'||Map[Index][9]=='-'){
        if(Map[Index][1]=='-') Map[Index][1]=i+'a';
        else Map[Index][9]=i+'a';
    }
}
int main (){
    scanf ("%d%d",&r,&n);
 
    for (int i=1;i<=r+3;i++) scanf ("%s",Map[i]);
 
    for (int i=0;i<n;i++){
        int sum1=0,sum2=0;
 
        for (int j=0;j<11;j++){
            if(Map[2][j]=='-') sum1++;
            if(Map[r/2+3][j]=='-') sum2++;
        }
 
        if(!sum1&&!sum2){
            int Index;
            int maxn=0;
            for (int j=1;j<=r+3;j++){
                int sum=0;
                for (int k=0;k<11;k++){
                    if(Map[j][k]=='-') sum++;
                }
                maxn=max(maxn,sum);
            }
            int minn=INF;
             for (int j=1;j<=r+3;j++){
                int sum=0;
                for (int k=0;k<11;k++){
                    if(Map[j][k]=='-') sum++;
                }
                if(sum==maxn){
                    int mindis=min(abs(j-(r+3)),min(abs(j-1),abs(j-(r/2+2))));
                    if(minn>mindis){
                        Index=j;
                        minn=mindis;
                    }
                }
            }
            work(Index,i);
        }
        else{
            int Index;
            if(sum1>=sum2) Index=2;
            else if(sum1<sum2) Index=r/2+3;
 
            work(Index,i);
        }
    }
    for (int i=1;i<=r+3;i++) printf ("%s\n",Map[i]);
    return 0;
}

### 动态角色分配算法概述 动态角色分配算法旨在解决多代理系统或多主体环境中资源的有效利用和任务的合理分派问题。这类算法允许实体根据环境变化灵活调整各自的角色,从而提高系统的适应性和效率[^1]。 #### 实现方式 在计算机科学领域,实现动态角色分配通常涉及以下几个方面: - **基于规则的方法**:通过预定义的一组规则来决定何时以及如何改变个体的角色。这些规则可以考虑当前的任务需求、可用资源和其他约束条件。 - **学习机制**:采用机器学习技术使系统能够自动识别模式并优化决策过程。强化学习是一种常用的技术,在这种设置下,智能体可以通过试错法学会最佳行为策略[^2]。 - **分布式计算框架**:为了处理大规模数据集或者复杂场景下的实时响应要求,常常会运用到像MapReduce这样的分布式计算模型来进行高效运算和支持并发操作。 ```python def assign_roles(agents, tasks): """ Assign roles to agents based on task requirements. :param agents: List of available agent objects with capabilities :param tasks: Dictionary mapping task IDs to their resource needs :return: Updated list of agents with assigned roles """ for agent in agents: best_task = find_best_matching_task(agent.capabilities, tasks) if best_task is not None: agent.role = determine_role(best_task) return agents ``` #### 应用案例分析 - **机器人协作**:多个自主移动机器人可以在仓库管理中执行货物搬运工作;此时就需要一套有效的角色分配方案让它们协同作业而不发生冲突。 - **网络安全防御体系**:面对不断演变的安全威胁形势,网络节点间可以根据流量特征快速切换防护级别或功能模块,形成自适应式的安全屏障。 - **云计算平台调度器**:云服务提供商内部存在大量异构硬件设施等待被充分利用起来提供给客户使用——这就需要用到高级别的虚拟机实例创建/销毁逻辑配合上合理的负载均衡措施共同完成这一目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值