"""Configs."""
from fvcore.common.config import CfgNode
# -----------------------------------------------------------------------------
# Config definition
# -----------------------------------------------------------------------------
_C = CfgNode()
# ---------------------------------------------------------------------------- #
# Training options.
# ---------------------------------------------------------------------------- #
_C.TRAIN = CfgNode()
# If True Train the model, else skip training.
_C.TRAIN.ENABLE = True
# Dataset.
_C.TRAIN.DATASET = "imagenet"
# Total mini-batch size.
_C.TRAIN.BATCH_SIZE = 256
# Evaluate model on test data every eval period epochs.
_C.TRAIN.EVAL_PERIOD = 10
# Save model checkpoint every checkpoint period epochs.
_C.TRAIN.CHECKPOINT_PERIOD = 10
# Resume training from the latest checkpoint in the output directory.
_C.TRAIN.AUTO_RESUME = True
# Path to the checkpoint to load the initial weight.
_C.TRAIN.CHECKPOINT_FILE_PATH = ""
# If True, reset epochs when loading checkpoint.
_C.TRAIN.CHECKPOINT_EPOCH_RESET = False
# If True, use FP16 for activations
_C.TRAIN.MIXED_PRECISION = False
_C = CfgNode()我的理解是类似于告诉你我建立了一个箱子,反正可以装东西了,下面你就可以王里面填写自己设置的内容了。
该配置定义了一个用于训练模型的参数集,包括是否进行训练、使用的数据集(如ImageNet)、批处理大小、评估和保存检查点的周期、自动恢复训练、初始权重的检查点路径以及是否使用混合精度训练。
2291

被折叠的 条评论
为什么被折叠?



