目标检测、图像分割、图像分类、目标识别区别

本文详细介绍了计算机视觉领域的五大核心任务,包括图像分类、目标检测、目标识别、语义分割和实例分割,阐述了每项任务的基本概念、应用场景及常用数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

##图像分类(image classification)

图像分类:根据图像的主要内容进行分类。
数据集:MNIST, CIFAR, ImageNet

##目标检测(object detection)

给定一幅图像,只需要找到一类目标所在的矩形框
人脸检测:人脸为目标,框出一幅图片中所有人脸所在的位置,背景为非目标
汽车检测:汽车为目标、框出一幅图片中所有汽车所在的位置,背景为非目标
数据集:PASCAL, COCO

##目标识别(object recognition)

将需要识别的目标,和数据库中的某个样例对应起来,完成识别功能
人脸识别:人脸检测,得到的人脸,再和数据库中的某个样例对应起来,进行识别,得到人脸的具体信息
数据集:PASCAL, COCO

##语义分割(semantic segmentation)

对图像中的每个像素都划分出对应的类别,即对一幅图像实现像素级别的分类
数据集:PASCAL, COCO

##实例分割(instance segmentation)
对图像中的每个像素都划分出对应的类别,即实现像素级别的分类,类的具体对象,即为实例,那么实例分割不但要进行像素级别的分类,还需在具体的类别基础上区别开不同的实例。
比如说图像有多个人甲、乙、丙,那边他们的语义分割结果都是人,而实例分割结果却是不同的对象,具体如下图(依次为:原图 ,语义分割 ,实例分割):
数据集:PASCAL, COCO
————————————————
版权声明:本文为优快云博主「ZealCV」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.youkuaiyun.com/u011574296/article/details/78933427

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值