更好的阅读体验
Currying
We can transform multiple-argument functions into a chain of single-argument, higher order functions. For example, we can write a function f(x, y) as a different function g(x)(y). This is known as currying.
For example, to convert the function add(x, y) into its curried form:
def curry_add(x):
def add2(y):
return x + y
return add2
Calling curry_add(1) returns a new function which only performs the addition once the returned function is called with the second addend.
>>> add_one = curry_add(1)
>>> add_one(2)
3
>>> add_one(4)
5
Refer to the textbook for more details about currying.
What Would Python Display?
Important: For all WWPD questions, type
Functionif you believe the answer is<function...>,Errorif it errors, andNothingif nothing is displayed.
Q1: WWPD: Lambda the Free
Use Ok to test your knowledge with the following “What Would Python Display?” questions:
python3 ok -q lambda -u✂️As a reminder, the following two lines of code will not display anything in the Python interpreter when executed:
>>> x = None >>> x
>>> lambda x: x # A lambda expression with one parameter x
______
>>> a = lambda x: x # Assigning the lambda function to the name a
>>> a(5)
______
>>> (lambda: 3)() # Using a lambda expression as an operator in a call exp.
______
>>> b = lambda x: lambda: x # Lambdas can return other lambdas!
>>> c = b(88)
>>> c
______
>>> c()
______
>>> d = lambda f: f(4) # They can have functions as arguments as well.
>>> def square(x):
... return x * x
>>> d(square)
______
>>> x = None # remember to review the rules of WWPD given above!
>>> x
>>> lambda x: x
______
>>> z = 3
>>> e = lambda x: lambda y: lambda: x + y + z
>>> e(0)(1)()
______
>>> f = lambda z: x + z
>>> f(3)
______
>>> higher_order_lambda = lambda f: lambda x: f(x)
>>> g = lambda x: x * x
>>> higher_order_lambda(2)(g) # Which argument belongs to which function call?
______
>>> higher_order_lambda(g)(2)
______
>>> call_thrice = lambda f: lambda x: f(f(f(x)))
>>> call_thrice(lambda y: y + 1)(0)
______
>>> print_lambda = lambda z: print(z) # When is the return expression of a lambda expression executed?
>>> print_lambda
______
>>> one_thousand = print_lambda(1000)
______
>>> one_thousand
______
Q2: WWPD: Higher Order Functions
Use Ok to test your knowledge with the following “What Would Python Display?” questions:
python3 ok -q hof-wwpd -u✂️
>>> def even(f):
... def odd(x):
... if x < 0:
... return f(-x)
... return f(x)
... return odd
>>> steven = lambda x: x
>>> stewart = even(steven)
>>> stewart
______
>>> stewart(61)
______
>>> stewart(-4)
______
>>> def cake():
... print('beets')
... def pie():
... print('sweets')
... return 'cake'
... return pie
>>> chocolate = cake()
______
>>> chocolate
______
>>> chocolate()
______
>>> more_chocolate, more_cake = chocolate(), cake
______
>>> more_chocolate
______
>>> def snake(x, y):
... if cake == more_cake:
... return chocolate
... else:
... return x + y
>>> snake(10, 20)
______
>>> snake(10, 20)()
______
>>> cake = 'cake'
>>> snake(10, 20)
______
Parsons Problems
To work on these problems, open the Parsons editor:
python3 parsons
Q3: A Hop, a Skip, and a Jump
Complete hop, which implements a curried version of the function f(x, y) = y.
def hop():
"""
Calling hop returns a curried version of the function f(x, y) = y.
>>> hop()(3)(2) # .Case 1
2
>>> hop()(3)(7) # .Case 2
7
>>> hop()(4)(7) # .Case 3
7
"""
"*** YOUR CODE HERE ***"
return lambda x: lambda y: y
Q4: Digit Index Factory
Complete the function digit_index_factory, which takes in two integers k and num as input and returns a function. The returned function takes no arguments, and outputs the offset between k and the rightmost digit of num. The offset between two numbers is defined to be the number of steps between the two numbers. For example, in 25, there is an offset of 1 between 2 and 5.
Note that 0 is considered to have no digits (not even 0).
def digit_index_factory(num, k):
"""
Returns a function that takes no arguments, and outputs the offset
between k and the rightmost digit of num. If k is not in num, then
the returned function returns -1. Note that 0 is considered to
contain no digits (not even 0).
>>> digit_index_factory(34567, 4)() # .Case 1
3
>>> digit_index_factory(30001, 0)() # .Case 2
1
>>> digit_index_factory(999, 1)() # .Case 3
-1
>>> digit_index_factory(1234, 0)() # .Case 4
-1
"""
"*** YOUR CODE HERE ***"
def digit_index_factory(num, k):1
index = 0
while num:
if num % 10 == k:
return lambda: index
index += 1
num //= 107
return lambda: -1
Coding Practice
Q5: Lambdas and Currying
Write a function lambda_curry2 that will curry any two argument function using lambdas.
Your solution to this problem should fit entirely on the return line. You can try first writing a solution without the restriction, and then rewriting it into one line after.
If the syntax check isn’t passing: Make sure you’ve removed the line containing
"***YOUR CODE HERE***"so that it doesn’t get treated as part of the function for the syntax check.
def lambda_curry2(func):
"""
Returns a Curried version of a two-argument function FUNC.
>>> from operator import add, mul, mod
>>> curried_add = lambda_curry2(add)
>>> add_three = curried_add(3)
>>> add_three(5)
8
>>> curried_mul = lambda_curry2(mul)
>>> mul_5 = curried_mul(5)
>>> mul_5(42)
210
>>> lambda_curry2(mod)(123)(10)
3
"""
"*** YOUR CODE HERE ***"
return lambda x: lambda y: func(x, y)
Use Ok to test your code:
python3 ok -q lambda_curry2✂️
Q6: Count van Count
Consider the following implementations of count_factors and count_primes:
def count_factors(n):
"""Return the number of positive factors that n has.
>>> count_factors(6)
4 # 1, 2, 3, 6
>>> count_factors(4)
3 # 1, 2, 4
"""
i = 1
count = 0
while i <= n:
if n % i == 0:
count += 1
i += 1
return count
def count_primes(n):
"""Return the number of prime numbers up to and including n.
>>> count_primes(6)
3 # 2, 3, 5
>>> count_primes(13)
6 # 2, 3, 5, 7, 11, 13
"""
i = 1
count = 0
while i <= n:
if is_prime(i):
count += 1
i += 1
return count
def is_prime(n):
return count_factors(n) == 2 # only factors are 1 and n
The implementations look quite similar! Generalize this logic by writing a function count_cond, which takes in a two-argument predicate function condition(n, i). count_cond returns a one-argument function that takes in n, which counts all the numbers from 1 to n that satisfy condition when called.
def count_cond(condition):
"""Returns a function with one parameter N that counts all the numbers from
1 to N that satisfy the two-argument predicate function Condition, where
the first argument for Condition is N and the second argument is the
number from 1 to N.
>>> count_factors = count_cond(lambda n, i: n % i == 0)
>>> count_factors(2) # 1, 2
2
>>> count_factors(4) # 1, 2, 4
3
>>> count_factors(12) # 1, 2, 3, 4, 6, 12
6
>>> is_prime = lambda n, i: count_factors(i) == 2
>>> count_primes = count_cond(is_prime)
>>> count_primes(2) # 2
1
>>> count_primes(3) # 2, 3
2
>>> count_primes(4) # 2, 3
2
>>> count_primes(5) # 2, 3, 5
3
>>> count_primes(20) # 2, 3, 5, 7, 11, 13, 17, 19
8
"""
"*** YOUR CODE HERE ***"
def counter(n):
i = 1
cnt = 0
while i <= n:
if condition(n, i):
cnt = cnt + 1
i = i + 1
return cnt
return counter
Use Ok to test your code:
python3 ok -q count_cond✂️
Submit
Make sure to submit this assignment by running:
python3 ok --submit
Optional Questions
Q7: Composite Identity Function
Write a function that takes in two single-argument functions, f and g, and returns another function that has a single parameter x. The returned function should return True if f(g(x)) is equal to g(f(x)). You can assume the output of g(x) is a valid input for f and vice versa. Try to use the composer function defined below for more HOF practice.
def composer(f, g):
"""Return the composition function which given x, computes f(g(x)).
>>> add_one = lambda x: x + 1 # adds one to x
>>> square = lambda x: x**2
>>> a1 = composer(square, add_one) # (x + 1)^2
>>> a1(4)
25
>>> mul_three = lambda x: x * 3 # multiplies 3 to x
>>> a2 = composer(mul_three, a1) # ((x + 1)^2) * 3
>>> a2(4)
75
>>> a2(5)
108
"""
return lambda x: f(g(x))
def composite_identity(f, g):
"""
Return a function with one parameter x that returns True if f(g(x)) is
equal to g(f(x)). You can assume the result of g(x) is a valid input for f
and vice versa.
>>> add_one = lambda x: x + 1 # adds one to x
>>> square = lambda x: x**2
>>> b1 = composite_identity(square, add_one)
>>> b1(0) # (0 + 1)^2 == 0^2 + 1
True
>>> b1(4) # (4 + 1)^2 != 4^2 + 1
False
"""
"*** YOUR CODE HERE ***"
def identity(x):
return composer(f, g)(x) == composer(g, f)(x)
return identity
Use Ok to test your code:
python3 ok -q composite_identity✂️
Q8: I Heard You Liked Functions…
Define a function cycle that takes in three functions f1, f2, f3, as arguments. cycle will return another function that should take in an integer argument n and return another function. That final function should take in an argument x and cycle through applying f1, f2, and f3 to x, depending on what n was. Here’s what the final function should do to x for a few values of n:
n = 0, returnxn = 1, applyf1tox, or returnf1(x)n = 2, applyf1toxand thenf2to the result of that, or returnf2(f1(x))n = 3, applyf1tox,f2to the result of applyingf1, and thenf3to the result of applyingf2, orf3(f2(f1(x)))n = 4, start the cycle again applyingf1, thenf2, thenf3, thenf1again, orf1(f3(f2(f1(x))))- And so forth.
Hint: most of the work goes inside the most nested function.
def cycle(f1, f2, f3):
"""Returns a function that is itself a higher-order function.
>>> def add1(x):
... return x + 1
>>> def times2(x):
... return x * 2
>>> def add3(x):
... return x + 3
>>> my_cycle = cycle(add1, times2, add3)
>>> identity = my_cycle(0)
>>> identity(5)
5
>>> add_one_then_double = my_cycle(2)
>>> add_one_then_double(1)
4
>>> do_all_functions = my_cycle(3)
>>> do_all_functions(2)
9
>>> do_more_than_a_cycle = my_cycle(4)
>>> do_more_than_a_cycle(2)
10
>>> do_two_cycles = my_cycle(6)
>>> do_two_cycles(1)
19
"""
"*** YOUR CODE HERE ***"
def ref_fn(n):
def ret(x):
if n == 0:
return x
return cycle(f2, f3, f1)(n - 1)(f1(x))
return ret
return ref_fn
Use Ok to test your code:
python3 ok -q cycle
本文介绍了Python中的柯里化技术,通过示例展示了如何将多参数函数转换为一系列单参数的高阶函数。同时,讨论了Lambda表达式的使用,包括返回其他Lambda、作为操作符以及与函数结合的场景。此外,还探讨了高阶函数的应用,如even函数用于处理奇偶性和count Cond函数用于根据条件计数。文章提供了实现这些概念的代码示例,帮助读者深入理解Python中的函数式编程技巧。
545

被折叠的 条评论
为什么被折叠?



