Humble Numbers
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 30 Accepted Submission(s) : 13
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers.
Write a program to find and print the nth element in this sequence
Write a program to find and print the nth element in this sequence
Input
The input consists of one or more test cases. Each test case consists of one integer n with 1 <= n <= 5842. Input is terminated by a value of zero (0) for n.
Output
For each test case, print one line saying "The nth humble number is number.". Depending on the value of n, the correct suffix "st", "nd", "rd", or "th" for the ordinal number nth has to be used like it is shown in the sample output.
Sample Input
1 2 3 4 11 12 13 21 22 23 100 1000 5842 0
Sample Output
The 1st humble number is 1. The 2nd humble number is 2. The 3rd humble number is 3. The 4th humble number is 4. The 11th humble number is 12. The 12th humble number is 14. The 13th humble number is 15. The 21st humble number is 28. The 22nd humble number is 30. The 23rd humble number is 32. The 100th humble number is 450. The 1000th humble number is 385875. The 5842nd humble number is 2000000000.
Source
University of Ulm Local Contest 1996
•找出N以内含有质因子2,3,5,7的数字并且从小到大排序,注意,“1”为默认值。
•看输出信息,存在另一个小陷阱
•The1sthumble number is 1.
•The2ndhumble number is 2.
•The3rdhumble number is 3.
•The4thhumble number is 4.
•The11thhumble number is 12.
•The 12thhumble number is 14.
•The13thhumble number is 15.
#include<iostream>
using namespace std;
int max(int a,int b)
{
if(b>a)return a;
else return b;
}
int main()
{
int num[6000];
int i,j,k,l,q,n;
i=j=k=l=1;
num[1]=1;
for(q=2;q<=5845;q++)
{
num[q]=max(num[i]*2,max(num[j]*3,max(num[k]*5,num[l]*7)));
if(num[q]==num[i]*2)
i++;
if(num[q]==num[j]*3)
j++;
if(num[q]==num[k]*5)
k++;
if(num[q]==num[l]*7)
l++;
}
while(cin>>n&&n!=0)
{
cout<<"The "<<n;
if(n%10==1&&n%100!=11)cout<<"st ";
else if(n%10==2&&n%100!=12)cout<<"nd ";
else if(n%10==3&&n%100!=13)cout<<"rd ";
else cout<<"th ";
cout<<"humble number is "<<num[n]<<"."<<endl;
}
return 0;
}

本博客探讨了如何找到一系列由仅包含质因子2、3、5或7的数字组成的序列中指定位置的元素,并详细介绍了输入、输出规则及解决思路。

被折叠的 条评论
为什么被折叠?



