【分块】教主的魔法 @洛谷P2801/upcexam3138

本文介绍了一种利用分块技巧处理大规模数据查询的方法。通过将数据分为sqrt(n)大小的块并进行局部排序,可以高效地处理区间修改与查询问题。文章详细解释了算法流程,并提供了具体实现代码。

时间限制: 1 Sec 内存限制: 128 MB
题目描述
教主最近学会了一种神奇的魔法,能够使人长高。于是他准备演示给XMYZ信息组每个英雄看。于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1、2、……、N。
每个人的身高一开始都是不超过1000的正整数。教主的魔法每次可以把闭区间[L, R](1≤L≤R≤N)内的英雄的身高全部加上一个整数W。(虽然L=R时并不符合区间的书写规范,但我们可以认为是单独增加第L(R)个英雄的身高)
CYZ、光哥和ZJQ等人不信教主的邪,于是他们有时候会问WD闭区间 [L, R] 内有多少英雄身高大于等于C,以验证教主的魔法是否真的有效。
WD巨懒,于是他把这个回答的任务交给了你。
输入
第1行为两个整数N、Q。Q为问题数与教主的施法数总和。
第2行有N个正整数,第i个数代表第i个英雄的身高。
第3到第Q+2行每行有一个操作:
(1)若第一个字母为“M”,则紧接着有三个数字L、R、W。表示对闭区间 [L, R] 内所有英雄的身高加上W。
(2)若第一个字母为“A”,则紧接着有三个数字L、R、C。询问闭区间 [L, R] 内有多少英雄的身高大于等于C。
输出
对每个“A”询问输出一行,仅含一个整数,表示闭区间 [L, R] 内身高大于等于C的英雄数。
样例输入
5 3
1 2 3 4 5
A 1 5 4
M 3 5 1
A 1 5 4
样例输出
2
3
提示
原先5个英雄身高为1、2、3、4、5,此时[1, 5]间有2个英雄的身高大于等于4。教主施法后变为1、2、4、5、6,此时[1, 5]间有3个英雄的身高大于等于4。
对30%的数据,N≤1000,Q≤1000。
对100%的数据,N≤1000000,Q≤3000,1≤W≤1000,1≤C≤1,000,000,000

第一次写分块题
将数据分成sqrt(n)块,对每个块分别排序。
对于修改操作,区间内完整的块修改其add数组的值,不完整的块暴力修改在区间内的部分,然后对整个块排序。
对于查询操作,区间内完整的块二分查找C-add[i]在区间内的位置,然后用该位置减去块的首位置,不完整的块暴力统计。

#define FILE_PC() freopen("C:\\Users\\hz\\Desktop\\in.txt","r",stdin)
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>

using namespace std;
const int maxn = 1000005;
const int maxdiv = 1005;
int a[maxn],b[maxn];
int l[maxdiv],r[maxdiv],add[maxdiv];
int lendiv,n,m;

int main() {
//    FILE_PC();
    scanf("%d%d",&n,&m);
    for(int i=1; i<=n; i++) {
        scanf("%d",a+i);
        b[i] = a[i];
    }
    lendiv = (int)sqrt(n); //分块长度
    int cntdiv = 0,flag = 1;
    for(int i=1; i<=n; i++) {
        if(cntdiv==0)l[++cntdiv] = i;//块的编号从1开始
        if(!flag) {
            l[++cntdiv] = i;
            flag = 1;
        }
        if(i%lendiv==0) {
            r[cntdiv] = i;
            flag = 0;
        }
    }
    r[cntdiv] = n; //最后一块的右区间
    for(int i=1; i<=cntdiv; i++) {
        sort(b+l[i],b+r[i]+1);
    }//每个块里面的元素排序
    for(int ca=0; ca<m; ca++) {
        char s[20];
        int ll,rr,cc;
        scanf("%s%d%d%d",s,&ll,&rr,&cc);
        if(s[0]=='M') {
            int ld = (int)(lower_bound(l+1,l+cntdiv+1,ll)-l);
            if(l[ld]!=ll) {
                for(int i=ll; i<min(l[ld],rr+1); i++) {
                    a[i]+=cc;
                }
                for(int i=l[ld-1]; i<=r[ld-1]; i++) {
                    b[i] = a[i];
                }
                sort(b+l[ld-1],b+r[ld-1]+1);//重新对这个块排序
            }
            if(l[ld]<rr+1) {
                int rd = (int)(lower_bound(r+1,r+cntdiv+1,rr)-r);
                if(rr!=r[rd]) {
                    for(int i=max(ll,r[rd-1]+1); i<=rr; i++) {
                        a[i] += cc;
                    }
                    for(int i=l[rd]; i<=r[rd]; i++) {
                        b[i] = a[i];
                    }
                    sort(b+l[rd],b+r[rd]+1);//同上
                }
                for(int i=ld; i<=((rr==r[rd])?rd:rd-1); i++) { //完整的块
                    add[i]+=cc;
                }
            }
        } else {
            int ans = 0;
            int ld = (int)(lower_bound(l+1,l+cntdiv+1,ll)-l);//给定的左区间落在哪一块
            if(l[ld]!=ll) {
                for(int i=ll; i<min(l[ld],rr+1); i++) { //暴力统计不完整的块
                    if(a[i]+add[ld-1]>=cc)ans++;
                }
            }
            if(l[ld]<rr+1) {
                int rd = (int)(lower_bound(r+1,r+cntdiv+1,rr)-r);//给定的右区间落在哪一块
                if(rr!=r[rd]) {
                    for(int i=max(ll,r[rd-1]+1); i<=rr; i++) { //同上
                        if(a[i]+add[rd]>=cc)ans++;
                    }
                }
                for(int i=ld; i<=((rr==r[rd])?rd:rd-1); i++) { //统计每一个完整的块
                    ans += (int)(b+r[i]+1-lower_bound(b+l[i],b+r[i]+1,cc-add[i]));
                }
            }
            printf("%d\n",ans);
        }
    }
    return 0;
}
<think>嗯,用户想了解如何用分块方法解决洛谷P2042这个维护数列的问题。首先,我需要回忆一下分块算法的基本概念。分块通常是将数据分成多个块,每个块单独处理,平衡查询和修改的时间复杂度。不过,题目是NOI2005的,可能比较复杂,因为维护数列通常涉及插入、删除、区间修改、翻转、求和、最大子段和等操作。分块处理这些操作可能比较麻烦,尤其是动态的插入和删除,会导致块的大小变化,影响效率。 首先,我得确认分块是否适合这个问题。一般来说,分块的时间复杂度是O(n√n),对于大数可能还行,但像这种NOI题目可能数据量较大,分块可能不够高效,不过用户明确问分块方法,所以需要找到如何结构设计。 维护数列的典型操作包括:在某个位置插入一段数列,删除某个区间,区间覆盖,区间翻转,区间求和,求最大子段和。分块的话,每个块需要维护这些操作的信息。比如每个块需要记录翻转标记、覆盖标记,以及各种区间和、最大子段和等。 接下来,分块的结构设计。每个块可以存储一个数组,同时维护块内的总和、最大前缀和、最大后缀和、最大子段和,以及翻转和覆盖的懒标记。插入和删除操作需要考虑块的分裂和合并,这可能比较复杂,因为频繁的插入删除会导致块的大小不均,影响效率。所以可能需要设置块的大小阈值,比如当块的大小超过2√n时分裂,小于√n/2时合并相邻块。 处理翻转操作时,每个块维护一个翻转标记,当需要翻转区间时,对覆盖的完整块标记翻转,并处理部分块。同样,覆盖操作需要懒标记,当块被完全覆盖时,直接更新块内的值,并记录覆盖值。 最大子段和的计算需要每个块维护内部的最大子段和、最大前缀和、最大后缀和,这样在查询时,可以将多个块的信息合并起来得到整体的最大子段和。这可能比较复杂,需要考虑块之间的前后缀如何组合。 插入和删除操作需要找到对应的位置所在的块,如果插入导致块过大,就分裂成两个块。删除时如果块变得过小,可能需要合并相邻块。这些操作需要维护块之间的链表结构,方便快速插入和删除块。 举个例子,当要在位置pos插入一段数列,首先找到pos所在的块,如果块的大小加上插入元素后超过阈值,就分裂该块为两个,然后将插入的元素作为新块插入到链表中。这样插入的时间复杂度是O(√n),因为分裂和插入块的时间与块的大小有关。 对于翻转和覆盖操作,应用懒标记是关键,这样可以延迟实际的操作,直到需要访问块的具体内容时才进行实际的处理。例如,当需要访问一个带有翻转标记的块时,先执行翻转操作,并清除标记。 不过分块在处理这些动态操作时,尤其是频繁的插入和删除,可能效率不如平衡树结构(如Splay或Treap),但分块实现起来可能相对简单一些。需要权衡实现复杂度和效率。 总结一下,分块实现的关键点包括: 1. 分块的结构设计,每个块维护必要的信息和懒标记。 2. 插入和删除时的块分裂与合并策略。 3. 懒标记的处理,如翻转和覆盖,何时下传。 4. 查询操作时如何合并各个块的信息,如最大子段和。 可能遇到的问题包括块的大小管理不当导致性能下降,懒标记处理错误导致数据不一致,以及在合并块信息时逻辑错误。需要详细设计每个操作的步骤,并处理各种边界情况,比如操作区间跨多个块,或者在块的开头或结尾的部分操作。 最后,参考用户提供的引用,尤其是引用[1]提到递归图的理解,可能分块的递归处理不太相关,但引用[2]提到洛谷题目,可能需要参考类似题解中的分块实现方法。不过用户提供的引用可能没有直接相关的内容,所以需要依靠已有的分块知识来构建解决方案。</think>### 分块方法实现洛谷 P2042 维护数列问题 #### 分块结构设计 1. **块内信息**: - 数据存储:每个块存储$size \leq 2\sqrt{n}$个元素 - 维护以下字段: ```text sum: 区间和 lmax: 最大前缀和 rmax: 最大后缀和 tmax: 最大子段和 rev: 翻转标记(0/1) cov: 覆盖标记(特殊值表示未覆盖) ``` 2. **分块逻辑**: - 块间通过链表或数组连接 - 插入/删除时动态调整块大小,触发分裂或合并(例如块大小超过$2\sqrt{n}$时分裂,相邻块总大小低于$\sqrt{n}$时合并) #### 核心操作实现 **1. 区间翻转(REVERSE)**: - 对完整覆盖的块:翻转标记`rev ^= 1`,交换`lmax`与`rmax` - 对部分覆盖的块:下传标记后暴力翻转元素 时间复杂度:$O(\sqrt{n})$ **2. 区间覆盖(MAKE-SAME)**: - 对完整覆盖的块:更新`cov`标记,直接计算`sum`,`lmax`,`rmax`,`tmax` - 对部分覆盖的块:下传标记后暴力修改 时间复杂度:$O(\sqrt{n})$ **3. 最大子段和(MAX-SUM)**: - 合并相邻块的`rmax`和`lmax`,遍历所有块维护全局最大值 时间复杂度:$O(\sqrt{n})$ **4. 插入(INSERT)**: - 定位插入位置所在块,若插入后块大小超过阈值则分裂 时间复杂度:$O(\sqrt{n} + k/\sqrt{n})$ **5. 删除(DELETE)**: - 移除目标区间涉及的所有块,合并相邻小块 时间复杂度:$O(\sqrt{n} + k/\sqrt{n})$ #### 代码框架示例(关键部分) ```python class Block: def __init__(self): self.data = [] self.sum = 0 self.lmax = self.rmax = self.tmax = -inf self.rev = 0 self.cov = None def push_down(self): # 下传覆盖/翻转标记到数据层 if self.cov is not None: self.data = [self.cov] * len(self.data) if self.rev: self.data.reverse() self.rev = 0 self.cov = None def update_info(self): # 重新计算sum/lmax/rmax/tmax pass class BlockList: def __init__(self): self.blocks = [] def split(self, idx): # 分裂过大的块 pass def merge(self): # 合并过小的相邻块 pass ``` #### 复杂度分析 | 操作类型 | 时间复杂度 | |----------------|---------------------| | 插入/删除 | $O(\sqrt{n} + k)$ | | 翻转/覆盖/求和 | $O(\sqrt{n})$ | | 最大子段和 | $O(\sqrt{n})$ | #### 注意事项 1. **标记下传策略**:在访问块内数据前必须下传所有标记 2. **块大小平衡**:通过动态分裂/合并保证$size \in [\sqrt{n}/2, 2\sqrt{n}]$ 3. **边界处理**:特别注意区间跨多个块时的部分覆盖情况
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值