31. 最小覆盖子串:思维很具有跳跃性
思路:哈希+双指针
类似于LC第三题, t t t字符串每个字母的个数, i i i指针不停右移,如果说 h s [ s [ i ] ] < = h t [ s [ i ] ] hs[s[i]]<=ht[s[i]] hs[s[i]]<=ht[s[i]]那么合法的字符串长度 + 1 +1 +1,移动左指针直到 h s [ s [ j ] ] = = h t [ [ s [ j ] ] hs[s[j]]==ht[[s[j]] hs[s[j]]==ht[[s[j]]为止,使得当前滑动窗口中的字符串数量最少,那么就得到一个合法的区间,每一次保留长度最短的合法区间
class Solution {
public:
string minWindow(string s, string t) {
unordered_map<char, int> hs, ht;
for (auto& c : t) ht[c] ++ ;
string res;
int cnt = 0;
for (int i = 0, j = 0; i < s.size(); i ++ ) {
hs[s[i]] ++ ;
if (hs[s[i]] <= ht[s[i]]) cnt ++ ;
while (hs[s[j]] > ht[s[j]]) hs[s[j ++ ]] -- ;
if (cnt == t.size()) {
if(res.empty() || i - j + 1 < res.size())
res = s.substr(j, i - j + 1);
}
}
return res;
}
};
32. 子集
思路一:递归
一个数组记录答案,一个数组记录当前选择的数。
如果已经枚举到最后一位数字就返回
class Solution {
public:
vector<vector<int>> res;
vector<int> path;
vector<vector<int>> subsets(vector<int>& nums) {
dfs(nums, 0);
return res;
}
void dfs(vector<int>& nums, int u) {
if (u == nums.size()) {
res.push_back(path);
return ;
}
dfs(nums, u + 1);
path.push_back(nums[u]);
dfs(nums, u + 1);
path.pop_back();
}
};
思路二:迭代
枚举所有选择的位数,用二进制表示是否选择
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> res;
int n = nums.size();
for (int i = 0; i < 1 << n; i ++ ) {
vector<int> path;
for (int j = 0; j < n; j ++ ) {
if (i >> j & 1)
path.push_back(nums[j]);
}
res.push_back(path);
}
return res;
}
};
33. 单词搜索
class Solution {
public:
int n, m;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
bool exist(vector<vector<char>>& board, string word) {
n = board.size(), m = board[0].size();
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ ) {
if (dfs(board, word, 0, i, j))
return true;
}
return false;
}
bool dfs(vector<vector<char>>& board, string word, int u, int x, int y) {
if (board[x][y] != word[u]) return false;
if (u == word.size() - 1) return true;
char c = board[x][y];
board[x][y] = '.';
for (int i = 0; i < 4; i ++ ) {
int a = x + dx[i], b = y + dy[i];
if (a >= 0 && a < n && b >= 0 && b < m && board[a][b] != '.') {
if (dfs(board, word, u + 1, a, b))
return true;
}
}
board[x][y] = c;
return false;
}
};
34. 柱状图中的最大矩形
思路:单调栈
分别从两端扫描, 用单调栈维护得到每一个下标左右可以取到的边界
class Solution {
public:
int largestRectangleArea(vector<int>& h) {
// 单调栈
int n = h.size();
vector<int> l(n), r(n);
stack<int> stk;
for (int i = 0; i < n; i ++ ) {
while (stk.size() && h[stk.top()] >= h[i]) stk.pop();
if (stk.empty()) l[i] = -1;
else l[i] = stk.top();
stk.push(i);
}
stk = stack<int>();
for (int i = n - 1; i >= 0; i -- ) {
while (stk.size() && h[stk.top()] >= h[i]) stk.pop();
if (stk.empty()) r[i] = n;
else r[i] = stk.top();
stk.push(i);
}
int res = 0;
for (int i = 0; i < n; i ++ )
res = max(res, h[i] *(r[i] - l[i] - 1));
return res;
}
};
35. 最大矩形
思路:
寻找每一行为最下边缘的可以得到的最大矩形,相当于34题的应用
class Solution {
public:
int largestRectangleArea(vector<int>& h) {
// 单调栈
int n = h.size();
vector<int> l(n), r(n);
stack<int> stk;
for (int i = 0; i < n; i ++ ) {
while (stk.size() && h[stk.top()] >= h[i]) stk.pop();
if (stk.empty()) l[i] = -1;
else l[i] = stk.top();
stk.push(i);
}
stk = stack<int>();
for (int i = n - 1; i >= 0; i -- ) {
while (stk.size() && h[stk.top()] >= h[i]) stk.pop();
if (stk.empty()) r[i] = n;
else r[i] = stk.top();
stk.push(i);
}
int res = 0;
for (int i = 0; i < n; i ++ )
res = max(res, h[i] *(r[i] - l[i] - 1));
return res;
}
int maximalRectangle(vector<vector<char>>& matrix) {
if (matrix.size() == 0 || matrix[0].size() == 0) return 0;
int n = matrix.size(), m = matrix[0].size();
vector<vector<int>> h(n, vector<int>(m));
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ ) {
if (matrix[i][j] == '1') {
if (i) h[i][j] = 1 + h[i - 1][j];
else h[i][j] = 1;
}
}
int res = 0;
for(int i = 0; i < n; i ++ )
res = max(res, largestRectangleArea(h[i]));
return res;
}
};