674. Longest Continuous Increasing Subsequence

本文介绍了一种算法,用于在未排序整数数组中查找最长连续递增子序列的长度。通过遍历数组并使用计数器来跟踪当前递增子序列的长度,当遇到不满足递增条件的元素时,计数器重置为1,并在每次迭代中更新已知的最大长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an unsorted array of integers, find the length of longest continuous increasing subsequence (subarray).

Example 1:

Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3. 
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4. 

 

Example 2:

Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1. 

思路:

1,空数组返回0

2,从头到尾遍历比较,若是满足递增,计算器+1,否则计数器=1,当计数器大于先前保存的最大的数时,更新最大的数

 

#pragma once
#include<iostream>
#include<vector>

using namespace std;

class Solution {
public:
	int findLengthOfLCIS(vector<int>& nums) {
		//数组为空
		if (nums.size() == 0)
		{
			return 0;
		}

		int maxlen = 1;//最长的
		int t = 1;//计数
		for (int i = 0; i < nums.size() - 1; i++)
		{
			//比较
			if (nums[i] < nums[i + 1])
			{
				t++;
			}
			else {
				t = 1;
			}
			//更新
			if (t > maxlen)
			{
				maxlen = t;
			}
		}

		return maxlen;
	}
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值