MG loves apple
Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 442 Accepted Submission(s): 76
Problem Description
MG is a rich boy. He has
n
apples, each has a value of V(
0<=V<=9
).
A valid number does not contain a leading zero, and these apples have just made a valid N digit number.
MG has the right to take away K apples in the sequence, he wonders if there exists a solution: After exactly taking away K apples, the valid N−K digit number of remaining apples mod 3 is zero.
MG thought it very easy and he had himself disdained to take the job. As a bystander, could you please help settle the problem and calculate the answer?
A valid number does not contain a leading zero, and these apples have just made a valid N digit number.
MG has the right to take away K apples in the sequence, he wonders if there exists a solution: After exactly taking away K apples, the valid N−K digit number of remaining apples mod 3 is zero.
MG thought it very easy and he had himself disdained to take the job. As a bystander, could you please help settle the problem and calculate the answer?
Input
The first line is an integer
T
which indicates the case number.(
1<=T<=60
)
And as for each case, there are 2 integer N(1<=N<=100000) , K(0<=K < N) in the first line which indicate apple-number, and the number of apple you should take away.
MG also promises the sum of N will not exceed 1000000 。
Then there are N integers X in the next line, the i-th integer means the i-th gold’s value( 0<=X<=9 ).
And as for each case, there are 2 integer N(1<=N<=100000) , K(0<=K < N) in the first line which indicate apple-number, and the number of apple you should take away.
MG also promises the sum of N will not exceed 1000000 。
Then there are N integers X in the next line, the i-th integer means the i-th gold’s value( 0<=X<=9 ).
Output
As for each case, you need to output a single line.
If the solution exists, print”yes”,else print “no”.(Excluding quotation marks)
If the solution exists, print”yes”,else print “no”.(Excluding quotation marks)
Sample Input
2 5 2 11230 4 2 1000
Sample Output
yes no
Source
官方题解:
这题更多算是想法题,有脑洞的同学可以各种乱搞。将问题转化成:求去掉K位数字后,不含前导零,且数字和是否能被三整除。按照预测,这里应该会汇聚本场最多的hack点。
我们设S0、S1、S2分别为原串上mod3=0、1、2数字的个数。 我们假定删除取模后为0、1、2的数字各A、B、C个,则显然有0<=A<=S0,0<=B<=S1,0<=C<=S2且K=A+B+C且Sum mod3=(A∗0+B∗1+C∗2)mod3=(S0∗0+S1∗1+S2∗2)mod3=bias。 枚举C的值,我们可得Bmod3=(bias−C∗2)mod3,A=K−B−C。如果有若干组A,B不逾界,可知这些(A,B,C)是在模意义下合法的解,但不一定满足没有前导零。
所以,对于【大于0的数】我们贪心地从后往前删除,对于0我们贪心地从前往后删除。
需要统计出:a3=第一个【mod3=0且非0的数】前0的个数(如果mod3=0且非0的数不存在,那么a3就取所有零的个数),E1=【第一个0前是否存在mod3=1的数】,E2=【第一个0前是否存在mod3=2的数】。
则以下情况满足任一种都能保证无前导零:A>=a3。B<S1且E1。C<S2且E2。
还需要加一种情况 满足k==n-1 也是yes
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<string>
#include<vector>
#include<deque>
#include<queue>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<ctime>
#include<string.h>
#include<math.h>
#include<list>
using namespace std;
#define ll long long
#define pii pair<int,int>
const int inf = 1e9 + 7;
const int N = 100000 + 5;
char ch[N];
int x[N];
bool slove(int n,int k){
for(int i=0;i<n;++i){
x[i]=ch[i]-'0';
x[i]%=3;
}
int s[3]={0,0,0};
int sum=0;
for(int i=0;i<n;++i){
s[x[i]]+=1;
sum+=x[i];
}
int a3=0;//>0&&mod3==0的第一数 前面的0的个数
bool e1,e2=e1=0;
for(int i=0;i<n;++i){
if(ch[i]!='0'&&x[i]==0){
break;
}
a3+=(x[i]==0);
if(x[i]==1){
e1=1;
}
if(x[i]==2){
e2=1;
}
}
for(int c=0;c<=s[2];++c){
int minb=((sum-2*c)%3 + 3)%3;
for(int b=minb;b<=s[1];b+=3){
int a=k-b-c;
if(a>=0&&a<=s[0]){
if((a>=a3)||(e1&&b<s[1])||(e2&&c<s[2])){
return 1;
}
if(k==n-1){
return 1;
}
}
}
}
return 0;
}
int main()
{
//freopen("/home/lu/Documents/r.txt","r",stdin);
//freopen("/home/lu/Documents/w.txt","w",stdout);
int T;
scanf("%d",&T);
while(T--){
int n,k;
scanf("%d%d%s",&n,&k,ch);
printf("%s\n",slove(n,k)?"yes":"no");
}
return 0;
}
探讨了如何从一系列苹果中移除特定数量的苹果,使得剩余苹果组成的数字不含前导零且能被3整除的问题。通过统计苹果价值模3的结果来寻找可行解。
513

被折叠的 条评论
为什么被折叠?



