POJ - 2029 Get Many Persimmon Trees —— 二维线段树 点更新区间查询

本文介绍了一个算法问题,即在一个给定大小的矩阵中找到包含最多特定元素(如日本柿子树)的最大子矩阵。通过使用一种类似于线段树的数据结构进行优化处理,实现了高效的点更新区间查询。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Get Many Persimmon Trees

Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 4822 Accepted: 3140

Description

Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In order to reward him for his meritorious career in education, Katanobu Matsudaira, the lord of the domain of Aizu, had decided to grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field. Inside the field which had also a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have as many persimmon trees as possible in the estate given by the lord. 
For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1. 

 
Figure 1: Examples of Rectangular Estates


Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.

Input

The input consists of multiple data sets. Each data set is given in the following format. 


W H 
x1 y1 
x2 y2 
... 
xN yN 
S T 

N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <= N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H. 

The end of the input is indicated by a line that solely contains a zero. 

Output

For each data set, you are requested to print one line containing the maximum possible number of persimmon trees that can be included in an estate of the given size.

Sample Input

16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0

Sample Output

4
3

题意说的是真的麻烦啊...

题意:一个n*m的全0矩阵,给出那些点里面的值为1,求一个s*t子矩阵里的最大和是多少

点更新区间查询

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <cmath>
#include <vector>
#include <bitset>
#define max_ 110
#define inf 0x3f3f3f3f
#define ll long long
#define les 1e-8
#define mod 364875103
using namespace std;
int tree[max_*4][max_*4];
int n,m,t;
void upda(int i,int x,int nl,int nr,int id)
{
    if(nl==nr)
    {
        tree[id][i]=1;
        return;
    }
    int mid=(nl+nr)>>1;
    if(x<=mid)
    upda(i<<1,x,nl,mid,id);
    else
    upda(i<<1|1,x,mid+1,nr,id);
    tree[id][i]=tree[id][i<<1]+tree[id][i<<1|1];
}
void up(int i,int x,int nl,int nr,int id)
{
    tree[id][i]=tree[id<<1][i]+tree[id<<1|1][i];
    if(nl==nr)
    return;
    int mid=(nl+nr)>>1;
    if(x<=mid)
    up(i<<1,x,nl,mid,id);
    else
    up(i<<1|1,x,mid+1,nr,id);
}
void updata(int i,int x,int y,int nl,int nr)
{
    if(nl==nr)
    {
        upda(1,y,1,m,i);
        return;
    }
    int mid=(nl+nr)>>1;
    if(x<=mid)
    updata(i<<1,x,y,nl,mid);
    else
    updata(i<<1|1,x,y,mid+1,nr);
    up(1,y,1,m,i);
}
int que(int i,int l,int r,int nl,int nr,int id)
{
    if(l==nl&&r==nr)
    {
        return tree[id][i];
    }
    int mid=(nl+nr)>>1;
    if(r<=mid)
    return que(i<<1,l,r,nl,mid,id);
    else if(l>mid)
    return que(i<<1|1,l,r,mid+1,nr,id);
    else
    return que(i<<1,l,mid,nl,mid,id)+que(i<<1|1,mid+1,r,mid+1,nr,id);
}
int query(int i,int l,int r,int nl,int nr,int dl,int dr)
{
    if(l==nl&&r==nr)
    {
        return que(1,dl,dr,1,m,i);
    }
    int mid=(nl+nr)>>1;
    if(r<=mid)
    return query(i<<1,l,r,nl,mid,dl,dr);
    else if(l>mid)
    return query(i<<1|1,l,r,mid+1,nr,dl,dr);
    else
    return query(i<<1,l,mid,nl,mid,dl,dr)+query(i<<1|1,mid+1,r,mid+1,nr,dl,dr);
}
int main(int argc, char const *argv[]) {
    while(scanf("%d",&t)!=EOF)
    {
        if(t==0)
        break;
        scanf("%d%d",&n,&m);
        memset(tree,0,sizeof tree);
        while(t--)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            updata(1,x,y,1,n);
        }
        int s,t;
        scanf("%d%d",&s,&t);
        int maxx=1;
        for(int i=1;i+s-1<=n;i++)
        {
            for(int j=1;j+t-1<=m;j++)
            {
                maxx=max(maxx,query(1,i,i+s-1,1,n,j,j+t-1));
            }
        }
        printf("%d\n",maxx );
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值