POJ - 1305 Fermat vs. Pythagoras —— 毕达哥拉斯三元组

本文介绍了一个计算机科学领域的编程问题——费马vs.毕达哥拉斯问题,该问题要求计算特定范围内满足费马最后定理条件的整数三元组数量,同时找出那些无法构成毕达哥拉斯三元组的正整数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fermat vs. Pythagoras
Time Limit: 2000MS Memory Limit: 10000K
Total Submissions: 1651 Accepted: 965

Description

Computer generated and assisted proofs and verification occupy a small niche in the realm of Computer Science. The first proof of the four-color problem was completed with the assistance of a computer program and current efforts in verification have succeeded in verifying the translation of high-level code down to the chip level. 
This problem deals with computing quantities relating to part of Fermat's Last Theorem: that there are no integer solutions of a^n + b^n = c^n for n > 2. 
Given a positive integer N, you are to write a program that computes two quantities regarding the solution of x^2 + y^2 = z^2, where x, y, and z are constrained to be positive integers less than or equal to N. You are to compute the number of triples (x,y,z) such that x < y < z, and they are relatively prime, i.e., have no common divisor larger than 1. You are also to compute the number of values 0 < p <= N such that p is not part of any triple (not just relatively prime triples). 

Input

The input consists of a sequence of positive integers, one per line. Each integer in the input file will be less than or equal to 1,000,000. Input is terminated by end-of-file

Output

For each integer N in the input file print two integers separated by a space. The first integer is the number of relatively prime triples (such that each component of the triple is <=N). The second number is the number of positive integers <=N that are not part of any triple whose components are all <=N. There should be one output line for each input line.

Sample Input

10
25
100

Sample Output

1 4
4 9
16 27

题意:给定数n,问能找到多少对三元组以及不能形成三元组的数有多少

思路:数据不大,直接按毕达哥拉斯三元组的判定条件暴力跑,(logn)^2的复杂度

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <cmath>
#include <vector>
#define max_ 1000100
#define inf 0x3f3f3f3f
#define ll long long
#define les 1e-8
#define mod 9901
using namespace std;
int n;
bool vis[1000010];
int main(int argc, char const *argv[]) {
	while(scanf("%d",&n)!=EOF)
	{
		memset(vis,false,sizeof vis);
		int x,y,z;
		int ans=0;
		for(int i=1;i*i<=n;i++)
		{
			for(int j=i+1;j*j<=n;j++)
			{
				if(i*i+j*j>n)
				break;
				if((i&1)!=(j&1)&&__gcd(i,j)==1)
				{
					x=2*i*j;
					y=j*j-i*i;
					z=i*i+j*j;
					ans++;
					int k=1;
					while(k*z<=n)
					{
						vis[k*x]=vis[k*y]=vis[k*z]=true;
						k++;
					}
				}
			}
		}
		int k=0;
		printf("%d ",ans);
		for(int i=1;i<=n;i++)
		{
			if(vis[i]==false)
			{
				k++;
			}
		}
		printf("%d\n",k);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值