POJ - 366 Cow Contest

本文介绍了一种通过Floyd算法解决牛牛编程竞赛排名的方法。比赛中每头牛的能力值不同,通过比赛结果确定牛的精确排名。利用Floyd算法进行松弛处理,最终统计能与其他所有牛建立胜负关系的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cow Contest
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 13569 Accepted: 7556

Description

N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ NA ≠ B), then cow A will always beat cow B.

Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B

Output

* Line 1: A single integer representing the number of cows whose ranks can be determined
 

Sample Input

5 5
4 3
4 2
3 2
1 2
2 5

Sample Output

2


题意:每头牛都有一个能力值,能力高的会打败能力低的牛,给出n头牛和m次两两比赛的结果,问如果按能力值从小到大排序,可以确定出几头牛的位次。


思路:能够确定出位次的牛,一定与其他n-1只牛都有固定的关系。因为牛数很少,所以用floyd松弛,然后遍历一遍,找出所有与其他牛都存在关系的牛的个数。


#include <iostream>
#include <cstdio>
#include <map>
#include <cstring>
#define ll long long
using namespace std;
int n,m;
int mp[200][200];
int main()
{
	while(cin>>n>>m)
	{
		memset(mp,0,sizeof(mp));
		while(m--)
		{
			int x,y;
			cin>>x>>y;
			mp[x][y]=1;
		}
		for(int k=1;k<=n;k++)
		{
			for(int i=1;i<=n;i++)
			{
				for(int j=1;j<=n;j++)
				{
					if(mp[i][k]==1&&mp[k][j]==1)
					{
						mp[i][j]=1;
					}
				}
			}
		}
		int ans=0;
		for(int i=1;i<=n;i++)
		{
			int cnt=0;
			for(int j=1;j<=n;j++)
			{
				if(i==j)
				continue;
				if(mp[i][j]==1||mp[j][i]==1)
				cnt++;
			}
			if(cnt>=n-1)
			{
				ans++;
			}
		}
		printf("%d\n",ans);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值