hdu 5443 ST表 简单求最大最小值

本文介绍了一种高效查询特定区间内最大水源大小的算法实现。针对一系列水源大小的数组,通过预处理建立数据结构,能够快速响应多次查询请求,找出指定范围内最大的水源值。此方法适用于水资源管理等场景。

In Land waterless, water is a very limited resource. People always fight for the biggest source of water. Given a sequence of water sources with a1,a2,a3,...,an representing the size of the water source. Given a set of queries each containing 2 integers l and r, please find out the biggest water source between al and ar.
Input
First you are given an integer T(T10) indicating the number of test cases. For each test case, there is a number n(0n1000) on a line representing the number of water sources. n integers follow, respectively a1,a2,a3,...,an, and each integer is in {1,...,106}. On the next line, there is a number q(0q1000) representing the number of queries. After that, there will be q lines with two integers l and r(1lrn) indicating the range of which you should find out the biggest water source.
Output
For each query, output an integer representing the size of the biggest water source.
Sample Input
3
1
100
1
1 1
5
1 2 3 4 5
5
1 2
1 3
2 4
3 4
3 5
3
1 999999 1
4
1 1
1 2
2 3
3 3
Sample Output
100
2
3
4
4
5
1
999999
999999
1

求 l r的最大值

#include <bits/stdc++.h>
using namespace std;
int a[1100];
int mx[1100][30];
int n;
void init()
{
    memset(mx,0,sizeof(mx));
    for(int i=1;i<=n;i++)
        mx[i][0]=a[i];
    int k=floor(log((double)n)/log(2.0));
    for(int i=1;i<=k;i++)
    {
        for(int j=n;j>=1;j--)
        {
            if(j+(1<<(i-1))<=n)
            {
                mx[j][i]=max(mx[j][i-1],mx[j+(1<<(i-1))][i-1]);
            }
        }
    }
}

int rmq(int i,int j)
{
    int k=floor(log((double)(j-i+1))/log(2.0));
    int maxx=max(mx[i][k],mx[j-(1<<k)+1][k]);
    return maxx;
}


int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        init();
        int m;
        scanf("%d",&m);
        while(m--)
        {
            int c,d;
            scanf("%d%d",&c,&d);
            printf("%d\n",rmq(c,d) );
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值