ts7_Missing_imputation_interpolation_MICE_NaN NaT fillNA_IterativeImputer_FeatureUnion_iloc_识别列表连续组

数据科学家在处理数据时经常会遇到缺失值问题。本章探讨了多种处理缺失值的方法,包括单变量和多变量插补,如pandas和scikit-learn的插补技术,以及插值方法。通过RMSE评估插补效果,并使用CO2排放和电商点击流数据集进行实证分析。在插补和插值中,多变量方法通常比单变量方法提供更好的结果,但需要平衡复杂度、质量和分析需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     As a data scientist, data analyst, or business analyst, you have probably discovered that obtaining a perfect clean dataset is too optimistic. What is more common, though, is that the data you are working with suffers from faws such as missing values, erroneous/ɪˈroʊniəs/ data, duplicate records, insuffcient data, or the presence of outliers in the data.

     Time series data is no different, and before plugging the data into any analysis or modeling workflow, you must investigate the data first. It is vital to understand the business context around the time series data to detect and identify these problems successfully. For example, if you work with

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LIQING LIN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值