矩阵快速幂: 因为结构体已经重载了 * 所以只需在原来普通的快速幂模板的基础上稍微修改一下。
其他操作主要是模拟。
#define _rep(i, a, b) for(int i = a; i <= b; i++)
#define _for(i, a, b) for(int i = a; i < b; i++)
#define M_sel *this
using namespace std;
typedef vector<int> vec_int;
typedef vector<vec_int> mat_int;
typedef long long ll;
const int Maxn = 1010;
const int Maxm = 1010;
const int Mod = 10000;
struct Matrix {
int n, m;
mat_int a;
Matrix(int n = 0, int m= 0) {
this->n = n; this->m = m;
vec_int tmp;
tmp.assign(m, 0);
_for(i, 0, n)
a.push_back(tmp);
}
Matrix operator + (const Matrix &b) const {
Matrix tmp(n, m);
_for(i, 0, n)
_for(j, 0, m)
tmp.a[i][j] = a[i][j] + b.a[i][j];
return tmp;
}
Matrix operator - (const Matrix &b) const {
Matrix tmp(n, m);
_for(i, 0, n)
_for(j, 0, m)
tmp.a[i][j] = a[i][j] - b.a[i][j];
return tmp;
}
Matrix operator * (const Matrix &b) const {
Matrix tmp(n, b.m);
_for(i, 0, n)
_for(j, 0, b.m)
_for(k, 0, m)
tmp.a[i][j] = (tmp.a[i][j] + a[i][k] * b.a[k][j] % Mod) % Mod;//Mod在外部设置,主要是为了方便求快速幂;
return tmp;
}
Matrix pow(ll b) {
Matrix tmp(n, m);
_for(i, 0, n)
tmp.a[i][i] = 1;
while (b) {
//if (b & 1) tmp = (*this) * tmp;
//(*this) = (*this) * (*this);
if (b & 1) tmp = M_sel * tmp; //指针和乘号放在一起很难受, 在上面开了个宏定义
M_sel = M_sel * M_sel;
b >>= 1;
}
return tmp;
}
};