import numpy as np
import shutil
import os
root = '/root/……/datasets/face_newData'
trainA_path = root + '/trainA'
trainB_path = root + '/trainB'
trainC_path = root + '/trainC'
testA_path = root + '/testA'
testB_path = root + '/testB'
testC_path = root + '/testC'
ID = []
for i in range(494):
idx = np.random.randint(10494)
print idx
if idx not in ID:
ID.append(idx)
A_path = trainA_path + '/{}_A.jpg'.format(idx)
A_new_path = testA_path + '/{}_A.jpg'.format(idx)
shutil.copy(A_path, A_new_path)
os.remove(A_path)
B_path = trainB_path + '/{}_B.jpg'.format(idx)
B_new_path = testB_path + '/{}_B.jpg'.format(idx)
shutil.copy(B_path, B_new_path)
os.remove(B_path)
C_path = trainC_path + '/{}_C.jpg'.format(idx)
C_new_path =testC_path + '/{}_C.jpg'.format(idx)
shutil.copy(C_path, C_new_path)
os.remove(C_path)
else:
continue以上代码主要是从trainA/B/C中随机选取494张图片copy到testA/B/C中
python-拷贝图片/移除图片
随机划分训练集到测试集
最新推荐文章于 2025-09-17 10:50:50 发布
该代码示例展示了如何从训练集文件夹(trainA/B/C)中随机选择494张图片,并将这些图片移动到测试集文件夹(testA/B/C)中,同时删除原训练集中的对应图片。
1061

被折叠的 条评论
为什么被折叠?



