高数笔记
1. 常用
-
xxx充分大时,有重要关系:
eαx>>xβ>>lnγxe^{\alpha x}>>x^{\beta}>>ln^{\gamma}xeαx>>xβ>>lnγx -
海涅定理(归结原则):
limx→x0f(x)=A\displaystyle\lim_{x\to x_0}f(x) = Ax→x0limf(x)=A 存在 ⇔limn→∞f(xn)=A\Leftrightarrow \displaystyle\lim_{n\to \infty}f(x_n)=A⇔n→∞limf(xn)=A 存在,
对任何x→x0x\to x_0x→x0 -
(uv)’=u′v+v′u(uv)’ =u'v+v'u(uv)’=u′v+v′u逆用所制造的辅助函数:
-
① [f(x)f(x)]’=[f2(x)]′=2f(x)f′(x)[f(x)f(x)]’=[f^2(x)]'=2f(x)f'(x)[f(x)f(x)]’=[f2(x)]′=2f(x)f′(x) 见 f(x)f′(x)f(x)f'(x)f(x)f′(x) ⇒\Rightarrow⇒ F(x)=f2(x)F(x)=f^2(x)F(x)=f2(x)
-
② [f(x)f′(x)]′=[f′(x)]2+f(x)f′′(x)[f(x)f'(x)]'=[f'(x)]^2+f(x)f''(x)[f(x)f′(x)]′=[f′(x)]2+f(x)f′′(x) ⇒\Rightarrow⇒ F(x)=f(x)f′′(x)F(x)=f(x)f''(x)F(x)=f(x)f′′(x)
-
③ [f(x)eφ(x)]′=f′(x)eφ(x)+f(x)eφ(x)φ′(x)[f(x)e^{\varphi(x)}]'=f'(x)e^{\varphi(x)}+f(x)e^{\varphi(x)}\varphi'(x)[f(x)eφ(x)]′=f′(x)eφ(x)+f(x)eφ(x)φ′(x) ⇒\Rightarrow⇒ F(x)=f(x)eφ(x)F(x)=f(x)e^{\varphi(x)}F(x)=f(x)eφ(x)
- 奇偶函数的加减乘除:
-
① 奇±\pm±奇=奇 偶±\pm±偶=偶 奇±\pm±偶=非奇非偶
-
② 奇×/÷\times/\div×/÷奇=奇 偶×/÷\times/\div×/÷偶=偶 奇×/÷\times/\div×/÷偶=奇
- 复合函数的奇偶性:(单调性)
⇒\Rightarrow⇒内偶则偶,内奇同外
⇒\Rightarrow⇒同增异减
- ①和差公式
-
sin(α±β)=sinαcosβ±cosαsinβ\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\betasin(α±β)=sinαcosβ±cosαsinβ
-
cos(α±β)=cosαcosβ∓sinαsinβ\cos(\alpha\pm\beta)=\cos\alpha\cos\beta∓\sin\alpha\sin\betacos(α±β)=cosαcosβ∓sinαsinβ
-
tan(α±β)=tanα±tanβ1∓tanαtanβ\tan(\alpha±\beta)=\frac{\tan\alpha±\tan\beta}{1∓\tan\alpha\tan\beta}tan(α±β)=1∓tanαtanβtanα±tanβ
-
cot(α±β)=cotα∓1cotβ±cotα\cot(\alpha±\beta)=\frac{\cot\alpha∓1}{\cot\beta±\cot\alpha}cot(α±β)=cotβ±cotαcotα∓1
②倍角公式
-
sin2α=2sinαcosα\sin2\alpha=2\sin\alpha\cos\alphasin2α=2sinαcosα
-
cos2α=cos2α−sin2α=1−2sin2α=2cos2α−1\cos2\alpha=\cos^2\alpha-\sin^2\alpha=1-2\sin^2\alpha=2\cos^2\alpha-1cos2α=cos2α−sin2α=1−2sin2α=2cos2α−1
③降幂公式
- sin2α=12(1−cos2α)\sin^2\alpha=\frac{1}{2}(1-\cos2\alpha)sin2α=21(1−cos2α) cos2α=12(1+cos2α)\cos^2\alpha=\frac{1}{2}(1+\cos2\alpha)cos2α=21(1+cos2α)
④半角公式
-
sinα2=±1−cosα2\sin{\frac{\alpha}{2}}=±\sqrt{\frac{1-\cos\alpha}{2}}sin2α=±21−cosα cosα2=±1+cosα2\cos\frac{\alpha}{2}=±\sqrt{\frac{1+\cos\alpha}{2}}cos2α=±21+cosα
-
tanα2=1−cosαsinα=sinα1+cosα=±1−cosα1+cosα\tan\frac{\alpha}{2}=\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}=±\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}tan2α=sinα1−cosα=1+cosαsinα=±1+cosα1−cosα
-
cotα2=sinα1−cosα=1+cosαsinα=±1+cosα1−cosα\cot\frac{\alpha}{2}=\frac{\sin\alpha}{1-\cos\alpha}=\frac{1+\cos\alpha}{\sin\alpha}=±\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}}cot2α=1−cosαsinα=sinα1+cosα=±1−cosα1+cosα
2. 常用十大不等式
-
∣a±b∣≤∣a∣+∣b∣|a±b|\leq|a|+|b|∣a±b∣≤∣a∣+∣b∣, ∣∣a∣−∣b∣∣≤∣a−b∣||a|-|b||\leq|a-b|∣∣a∣−∣b∣∣≤∣a−b∣
-
ab≤a+b2≤a2+b22\sqrt{ab}\leq\frac{a+b}{2}\leq\sqrt{\frac{a^2+b^2}{2}}ab≤2a+b≤2a2+b2, (a,b>0)(a,b>0)(a,b>0)
abc3≤a+b+c3≤a2+b2+c23\sqrt[3]{abc}\leq\frac{a+b+c}{3}\leq\sqrt{\frac{a^2+b^2+c^2}{3}}3abc≤3a+b+c≤3a2+b2+c2, (a,b,c>0)(a,b,c>0)(a,b,c>0)
-
设a>b>0a>b>0a>b>0,则{当n>0时,an>bn当n<0时,an<bn\begin{cases}当n>0时,&a^n>b^n\\当n<0时,&a^n < b^n \end{cases}{当n>0时,当n<0时,an>bnan<bn
-
设0<a<x<b0<a<x<b0<a<x<b,0<c<y<d0<c<y<d0<c<y<d
则cb<yx<da\frac{c}{b}<\frac{y}{x}<\frac{d}{a}bc<xy<ad
-
sinx<x<tanxsinx<x<tanxsinx<x<tanx, (0<x<π2)(0<x<\frac{\pi}{2})(0<x<2π)
-
sinx<x\sin x<xsinx<x, (x>0)(x>0)(x>0)
-
arctanx≤x≤arcsinxarctanx\leq x\leq arcsinxarctanx≤x≤arcsinx, (0≤x≤1)(0\leq x \leq1)(0≤x≤1)
-
ex≥x+1e^x\geq x+1ex≥x+1, (∀x)(\forall x)(∀x)
-
x−1≥lnxx-1\geq lnxx−1≥lnx, (x>0)(x>0)(x>0)
-
11+x<ln(1+1x)<1x\frac{1}{1+x}<ln(1+\frac{1}{x})<\frac{1}{x}1+x1<ln(1+x1)<x1, (x>0)(x>0)(x>0)
5万+





