1.矩阵对应元素相乘与eye函数构造对角矩阵
a = np.array([[1,2,3],
[4,5,6],
[7,8,9]])
a*np.eye(3)
array([[ 1., 0., 0.],
[ 0., 5., 0.],
[ 0., 0., 9.]])
2.linalg.inv矩阵求逆
import numpy as np
from scipy import linalg
a = np.array([[1,2],
[3,4]])
b = linalg.inv(a)
b
array([[-2. , 1. ],
[ 1.5, -0.5]])
a.dot(b) = array([[ 1., 0.],
[ 0., 1.]])
3.np.expand_dims函数扩大维度
import numpy as np
a = np.array([[1,2,3],
[4,5,6]])
b = np.expand_dims(a,axis=0)#在第一维上加上一个维度
b
array([[[1, 2, 3],
[4, 5, 6]]])
import numpy as np
a = np.array([[1,2,3],
[4,5,6]])
b = np.expand_dims(a,axis=1)#在第二维上加上一个维度
b
array([[[1, 2, 3]],
[[4, 5, 6]]])
4.多维矩阵的转置,将最小的维度和最大的维度对换
import numpy as np
a = np.array([[[1,2],
[3,4]],
[[5,6],
[7,8]]])
b = a.T
b
array([[[1, 5],
[3, 7]],
[[2, 6],
[4, 8]]])
2(0,0,1) –>5(1,0,0)
4(0,1,1) –>7(1,1,0)