LeetCode #475 - Heaters

本文介绍了一种算法,用于计算一组加热器覆盖所有房屋所需的最小供暖半径。通过排序和搜索,确保每个房屋都能被至少一个加热器覆盖。

题目描述:

Winter is coming! Your first job during the contest is to design a standard heater with fixed warm radius to warm all the houses.

Now, you are given positions of houses and heaters on a horizontal line, find out minimum radius of heaters so that all houses could be covered by those heaters.

So, your input will be the positions of houses and heaters seperately, and your expected output will be the minimum radius standard of heaters.

Note:

  1. Numbers of houses and heaters you are given are non-negative and will not exceed 25000.
  2. Positions of houses and heaters you are given are non-negative and will not exceed 10^9.
  3. As long as a house is in the heaters' warm radius range, it can be warmed.
  4. All the heaters follow your radius standard and the warm radius will the same.

Example 1:

Input: [1,2,3],[2]
Output: 1
Explanation: The only heater was placed in the position 2, and if we use the radius 1 standard, then all the houses can be warmed.

Example 2:

Input: [1,2,3,4],[1,4]
Output: 1
Explanation: The two heater was placed in the position 1 and 4. We need to use radius 1 standard, then all the houses can be warmed.

给定一组加热器的位置和一组房子的位置,求加热器的供暖半径使得所有的房子都能取暖。先将加热器和房子都排序,那么对于每栋房子都在加热器数组中搜索,找到距离最近的加热器,这就是为了给这栋房子供暖所需要的最小的供暖半径,对每栋房子都这样搜索就可以确定满足所有房子的供暖半径。

class Solution {
public:
    int findRadius(vector<int>& houses, vector<int>& heaters) {
        if(houses.size()==0||heaters.size()==0) return 0;
        sort(houses.begin(),houses.end());
        sort(heaters.begin(),heaters.end());
        int result=0;
        for(int i=0;i<houses.size();i++)
        {
            int j=lower_bound(heaters.begin(),heaters.end(),houses[i])-heaters.begin();
            if(j==0) result=max(result,heaters[0]-houses[i]);
            else if(j==heaters.size()) result=max(result,houses[i]-heaters.back());
            else result=max(result,min(heaters[j]-houses[i],houses[i]-heaters[j-1]));
        }
        return result;
    }
};

 

【轴承故障诊断】加权多尺度字典学习模型(WMSDL)及其在轴承故障诊断上的应用(Matlab代码实现)内容概要:本文介绍了加权多尺度字典学习模型(WMSDL)在轴承故障诊断中的应用,并提供了基于Matlab的代码实现。该模型结合多尺度分析与字典学习技术,能够有效提取轴承振动信号中的故障特征,提升故障识别精度。文档重点阐述了WMSDL模型的理论基础、算法流程及其在实际故障诊断中的实施步骤,展示了其相较于传统方法在特征表达能力和诊断准确性方面的优势。同时,文中还提及该资源属于一个涵盖多个科研方向的技术合集,包括智能优化算法、机器学习、信号处理、电力系统等多个领域的Matlab仿真案例。; 适合人群:具备一定信号处理和机器学习基础,从事机械故障诊断、工业自动化、智能制造等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①学习并掌握加权多尺度字典学习模型的基本原理与实现方法;②将其应用于旋转机械的轴承故障特征提取与智能诊断;③结合实际工程数据复现算法,提升故障诊断系统的准确性和鲁棒性。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注字典学习的训练过程与多尺度分解的实现细节,同时可参考文中提到的其他相关技术(如VMD、CNN、BILSTM等)进行对比实验与算法优化。
【硕士论文复现】可再生能源发电与电动汽车的协同调度策略研究(Matlab代码实现)内容概要:本文档围绕“可再生能源发电与电动汽车的协同调度策略研究”展开,旨在通过Matlab代码复现硕士论文中的核心模型与算法,探讨可再生能源(如风电、光伏)与大规模电动汽车接入电网后的协同优化调度方法。研究重点包括考虑需求侧响应的多时间尺度调度、电动汽车集群有序充电优化、源荷不确定性建模及鲁棒优化方法的应用。文中提供了完整的Matlab实现代码与仿真模型,涵盖从场景生成、数学建模到求解算法(如NSGA-III、粒子群优化、ADMM等)的全过程,帮助读者深入理解微电网与智能电网中的能量管理机制。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源、智能电网、电动汽车等领域技术研发的工程人员。; 使用场景及目标:①用于复现和验证硕士论文中的协同调度模型;②支撑科研工作中关于可再生能源消纳、电动汽车V2G调度、需求响应机制等课题的算法开发与仿真验证;③作为教学案例辅助讲授能源互联网中的优化调度理论与实践。; 阅读建议:建议结合文档提供的网盘资源下载完整代码,按照目录顺序逐步学习各模块实现,重点关注模型构建逻辑与优化算法的Matlab实现细节,并通过修改参数进行仿真实验以加深理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值