题目描述:
You are given two jugs with capacities x and y litres. There is an infinite amount of water supply available. You need to determine whether it is possible to measure exactly z litres using these two jugs.
If z liters of water is measurable, you must have z liters of water contained within one or both buckets by the end.
Operations allowed:
- Fill any of the jugs completely with water.
- Empty any of the jugs.
- Pour water from one jug into another till the other jug is completely full or the first jug itself is empty.
Example 1: (From the famous "Die Hard" example)
Input: x = 3, y = 5, z = 4
Output: True
Example 2:
Input: x = 2, y = 6, z = 5
Output: False
给定两个固定体积的壶,对一个壶中的水可以加满、倒光或者倒入另外一个壶中,求最终是否能量出目标值的水。
其实这个问题可以转化为令z=m*x+n*y,问是否存在m,n满足等式,根据裴蜀定理,z=m*x+n*y有整数解时当且仅当z是x及y的最大公约数d的倍数。所以问题转化为求x,y的最大公约数,采用的是辗转相除法,不断求大数相对于小数的余数,如果余数为0,那么最大公约数就是小数,否则令余数和小数继续递归。
class Solution {
public:
bool canMeasureWater(int x, int y, int z) {
if(x+y<z) return false;
if(z==0) return true;
else if(x==0&&y==0) return false;
if(z%gcd(min(x,y),max(x,y))==0) return true;
else return false;
}
int gcd(int x,int y)
{
if(x==0) return y;
int k=y%x;
if(k==0) return x;
return gcd(k,x);
}
};