题目描述:
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5 you should return [0,1,1,2,1,2].
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
求1~n每个数的为1 的位数,时间复杂的为O(n*sizeof(integer)),空间复杂度为O(n)。
class Solution {
public:
vector<int> countBits(int num) {
vector<int> bits_num(num+1,0);
for(int i=0;i<=num;i++)
bits_num[i]=get_bits_num(i);
return bits_num;
}
int get_bits_num(int num)
{
int count=0;
while(num>0)
{
if(num%2==1) count++;
num/=2;
}
return count;
}
};
本文介绍了一种算法,该算法可以计算从1到n范围内每个整数在二进制表示下1的个数,并返回这些计数构成的数组。该算法的时间复杂度为O(n * sizeof(integer)),空间复杂度为O(n)。
485

被折叠的 条评论
为什么被折叠?



