题目描述:
Given a matrix, and a target, return the number of non-empty submatrices that sum to target.
A submatrix x1, y1, x2, y2 is the set of all cells matrix[x][y] with x1 <= x <= x2 and y1 <= y <= y2.
Two submatrices (x1, y1, x2, y2) and (x1', y1', x2', y2') are different if they have some coordinate that is different: for example, if x1 != x1'.
Example 1:
Input: matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0
Output: 4
Explanation: The four 1x1 submatrices that only contain 0.
Example 2:
Input: matrix = [[1,-1],[-1,1]], target = 0
Output: 5
Explanation: The two 1x2 submatrices, plus the two 2x1 submatrices, plus the 2x2 submatrix.
Note:
1 <= matrix.length <= 3001 <= matrix[0].length <= 300-1000 <= matrix[i] <= 1000-10^8 <= target <= 10^8
class Solution {
public:
int numSubmatrixSumTarget(vector<vector<int>>& matrix, int target) {
int m=matrix.size(), n=matrix[0].size();
int result=0;
for(int i=0;i<m;i++) // 计算每一行的前缀和
for(int j=1;j<n;j++)
matrix[i][j]+=matrix[i][j-1];
// 枚举左右边界,由于i和j确定之后,利用哈希表变成一维的target sum
for(int i=0;i<n;i++)
{
for(int j=i;j<n;j++)
{
unordered_map<int,int> map; // 前缀和出现的次数
map[0]=1;
int prefix_sum=0;
for(int k=0;k<m;k++)
{ // 第k行中第i列到第j列的前缀和
if(i==0) prefix_sum+=matrix[k][j];
else prefix_sum+=matrix[k][j]-matrix[k][i-1];
if(map.count(prefix_sum-target))
result+=map[prefix_sum-target];
map[prefix_sum]++;
}
}
}
return result;
}
};
本文介绍了一种高效算法,用于计算给定矩阵中所有非空子矩阵的数目,这些子矩阵的元素之和等于指定的目标值。通过计算每行的前缀和,再枚举左右边界并使用哈希表,将二维问题转化为一维问题,从而显著提高了搜索效率。

351

被折叠的 条评论
为什么被折叠?



