题目描述:
Under a grammar given below, strings can represent a set of lowercase words. Let's use R(expr) to denote the set of words the expression represents.
Grammar can best be understood through simple examples:
- Single letters represent a singleton set containing that word.
R("a") = {"a"}R("w") = {"w"}
- When we take a comma delimited list of 2 or more expressions, we take the union of possibilities.
R("{a,b,c}") = {"a","b","c"}R("{{a,b},{b,c}}") = {"a","b","c"}(notice the final set only contains each word at most once)
- When we concatenate two expressions, we take the set of possible concatenations between two words where the first word comes from the first expression and the second word comes from the second expression.
R("{a,b}{c,d}") = {"ac","ad","bc","bd"}R("a{b,c}{d,e}f{g,h}") = {"abdfg", "abdfh", "abefg", "abefh", "acdfg", "acdfh", "acefg", "acefh"}
Formally, the 3 rules for our grammar:
- For every lowercase letter
x, we haveR(x) = {x} - For expressions
e_1, e_2, ... , e_kwithk >= 2, we haveR({e_1,e_2,...}) = R(e_1) ∪ R(e_2) ∪ ... - For expressions
e_1ande_2, we haveR(e_1 + e_2) = {a + b for (a, b) in R(e_1) × R(e_2)}, where + denotes concatenation, and × denotes the cartesian product.
Given an expression representing a set of words under the given grammar, return the sorted list of words that the expression represents.
Example 1:
Input: "{a,b}{c,{d,e}}"
Output: ["ac","ad","ae","bc","bd","be"]
Example 2:
Input: "{{a,z},a{b,c},{ab,z}}"
Output: ["a","ab","ac","z"]
Explanation: Each distinct word is written only once in the final answer.
Constraints:
1 <= expression.length <= 60expression[i]consists of'{','}',','or lowercase English letters.- The given
expressionrepresents a set of words based on the grammar given in the description.
class Solution {
public:
vector<string> braceExpansionII(string str) {
int i=0;
unordered_set<string> result=parseRule1(str,i);
vector<string> ret(result.begin(),result.end());
sort(ret.begin(),ret.end());
return ret;
}
private:
unordered_set<string> merge(unordered_set<string>&a, unordered_set<string>&b){
if(a.size()==0) return b;
if(b.size()==0) return a;
unordered_set<string> result;
for(auto& s1: a)
for(auto& s2: b) result.insert(s1+s2);
return result;
}
//{a,b},{c,d},有逗号分隔多个选项,当没有逗号分隔时就是单一选项
unordered_set<string> parseRule1(const string& str, int& i){
unordered_set<string> result;
result=parseRule2(str,i);
while(i<str.length())
{
if(str[i]!=',') break;
i++;
unordered_set<string> tmp=parseRule2(str,i);
result.insert(tmp.begin(),tmp.end());
}
return result;
}
//a{c,d}b{e,f},没有逗号分隔,括号左右可能有字母,整个字符串就是一个选项
unordered_set<string> parseRule2(const string& str, int& i){
unordered_set<string> result;
while(i<str.length())
{
if(str[i]=='}'||str[i]==',') break;
if(str[i]=='{')
{
unordered_set<string> tmp=parseRule3(str, i);
result=merge(result,tmp);
}
else
{
unordered_set<string> tmp;
string tmpStr;
while(i<str.length()&&str[i]<='z'&&str[i]>='a')
tmpStr.push_back(str[i++]);
tmp.insert(tmpStr);
result=merge(result,tmp);
}
}
return result;
}
//{a,b,c}, 括号把所有选项包含,左右没有其他字母,整个字符串就是一个选项
unordered_set<string> parseRule3(const string& str, int& i){
unordered_set<string> result;
i++; // 跳过左括号
result=parseRule1(str,i);
i++; // 跳过右括号
return result;
}
};
本文介绍了一种解析复杂表达式的算法,通过递归地解析三种规则:单一字符、逗号分隔的表达式列表和表达式的连接。文章详细解释了如何使用C++实现这一解析过程,并提供了具体的代码示例。
1277

被折叠的 条评论
为什么被折叠?



