题目描述:
In an N by N square grid, each cell is either empty (0) or blocked (1).
A clear path from top-left to bottom-right has length k if and only if it is composed of cells C_1, C_2, ..., C_k such that:
- Adjacent cells
C_iandC_{i+1}are connected 8-directionally (ie., they are different and share an edge or corner) C_1is at location(0, 0)(ie. has valuegrid[0][0])C_kis at location(N-1, N-1)(ie. has valuegrid[N-1][N-1])- If
C_iis located at(r, c), thengrid[r][c]is empty (ie.grid[r][c] == 0).
Return the length of the shortest such clear path from top-left to bottom-right. If such a path does not exist, return -1.
Example 1:
Input: [[0,1],[1,0]]
Output: 2
Example 2:
Input: [[0,0,0],[1,1,0],[1,1,0]]
Output: 4
Note:
1 <= grid.length == grid[0].length <= 100grid[r][c]is0or1
class Solution {
public:
int shortestPathBinaryMatrix(vector<vector<int>>& grid) {
if(grid[0][0]==1) return -1; // 需要单独判断起点为1的情况
int n=grid.size();
vector<vector<int>> dist(n,vector<int>(n,INT_MAX));
dist[0][0]=1;
vector<pair<int,int>> dirs={{0,1},{0,-1},{1,0},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1}};
queue<pair<int,int>> q;
q.push({0,0});
while(!q.empty())
{
int i=q.front().first, j=q.front().second;
q.pop();
for(int k=0;k<8;k++)
{
int x=i+dirs[k].first, y=j+dirs[k].second;
if(x<0||x>=n||y<0|y>=n||grid[x][y]==1) continue;
if(dist[x][y]>dist[i][j]+1)
{
dist[x][y]=dist[i][j]+1;
q.push({x,y});
}
}
}
if(dist[n-1][n-1]==INT_MAX) return -1;
else return dist[n-1][n-1];
}
};
533

被折叠的 条评论
为什么被折叠?



