从人工到自动化到AIOps再到ChatOps:大模型在运维领域的应用

一、引言

在信息技术飞速发展的今天,运维工作已经从最初的人工操作,逐步演变为自动化、AIOps(人工智能运维)和ChatOps(通过聊天的方式去运维)。这些变革不仅提升了运维效率,还显著保障了系统的稳定性。特别是借助大模型,运维同学能够更加高效地完成工作,并应对复杂的运维挑战。本文将依次介绍这些概念,并探讨大模型在运维领域的具体应用。

二、运维的演变历程

1. 人工运维

  • 概念:人工运维是指通过人工手动执行各种运维任务,如服务器配置、日志分析、故障排除等。

  • 挑战:人工操作容易出错,效率低下,且无法快速响应突发事件。

2. 自动化运维

  • 概念:自动化运维通过编写脚本和使用工具来自动执行运维任务,减少人工干预。

  • 优势:提高效率,减少人为错误,能够快速重复执行任务。

  • 工具:Ansible、Puppet、Chef等。

3. AIOps(智能运维)

  • 概念:AIOps利用机器学习和大数据分析技术,自动检测、分析和解决运维问题。

  • 优势:能够处理海量数据,提前预测故障,自动化决策和响应。

  • 应用:异常检测、根因分析、自动化修复等。

4. ChatOps(通过聊天的方式去运维)

  • 概念:ChatOps通过将运维工具集成到聊天平台(如咚咚、微信)中,让运维同学通过聊天界面执行运维任务。

  • 优势:将运维自动化的能力通过聊天的方式提供给运维、开发等人员使用,使运维同学具有可以随时随地使用手机远程运维的能力。

三、大模型在运维领域的应用

大模型在运维领域的应用,能够进一步提升运维工作的智能化和自动化水平。以往,受限于自然语言处理(NLP)模型的限制,现有的机器学习模型在理解人类的问题和上下文方面存在较大挑战。这导致了当前的ChatOps应用主要依赖于预置的指令,通过设计好的NLP任务来完成一些运维工作。

借助大模型的强大自然语言理解能力,目前可以较好和方便地构建智能的运维应用。以下是几个结合大模型的运维场景,这些场景展示了大模型在提升运维工作智能化和自动化水平方面的潜力。

1. 运维智能助手

  • 问题:因为当前的机器人不够智能,运维同学需要24小时在线协助研发同学解决使用内部工具遇到的问题。

  • 解决方案:可以基于大模型构建RAG应用,使用运维同学沉淀的运维知识库和热门问题,使研发同学能自助的、快速的解决大部分问题。

2. 自动化问题诊断与修复

  • 问题:传统问题诊断需要人工介入,耗时且易出错。

  • 解决方案:大模型能够自动诊断系统问题,并提供修复建议或自动执行修复操作。

3. 智能日志分析

  • 问题:传统日志分析需要手动筛选和分析,效率低且容易遗漏关键信息。在AIOps产品中,我们已经构建了基于日志模版的智能日志分析,但在构建日志模版的过程中,还是依赖相关的运维专家经验去构建相关的运维模版。

  • 解决方案:大模型本身是通用领域的专家,借助上面构建的RAG的私域运维知识和他的通用经验,基于大模型构建一个运维日志监控专家,24小时审查关键日志,通过他可以自动解析海量日志,识别异常模式,并生成易于理解的报告。

  • 例子:在服务器日志中,大模型能够快速识别出潜在的安全威胁(如异常登录尝试),并提醒运维人员采取措施。

四、结论

稳定是运维部门的主要目标,但一台精密复杂的机器,难免在运行一段时间后出现故障,出现故障后,要求我们能依赖现有的监控、告警数据,通过AIOps平台或基于大模型的工具快速的,在这庞大复杂的系统中找到问题、定位问题并解决问题,这也是当前我们运维部门的目标1,5,15原则:1分钟发现故障,5分钟定位故障,15分钟解决故障。

从人工运维到自动化运维,再到AIOps和ChatOps,运维工作的智能化和自动化水平不断提升。借助大模型,运维同学能够更加高效地完成工作,保障系统的稳定性。通过智能日志分析、故障预测与预防、自动化问题诊断与修复,以及知识库与文档生成,大模型在运维领域展现出巨大的应用潜力。未来,随着大模型技术的不断发展,运维工作的智能化水平将进一步提升,为企业的信息系统保驾护航。

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值