机器学习(PET图像重建、tensorflow、GPU/distributed)

本文主要介绍了TensorFlow的应用、相关概念及计算框架,还拓展了PET、图像重建等知识。阐述了线性回归、矩阵等内容,分析了GPU在处理图形和复杂算法上的优势及应用场景。此外,介绍了Python的tqdm、h5py模块,以及Jupyter的使用和内核配置。

1. TensorFlow 

TensorFlow不仅可以用来做神经网络算法研究,也可以用来做普通的机器学习算法,甚至是只要你能够把计算表示成数据流图,都可以用TensorFlow。

一个简单的小例子:(前三张:输入,最后一张:输出)loss会返回,使得输入无限准确。经过200次的训练,使得w和b的值无限接近一开始预设的0.1和0.3。

            

     

人工智能实战项目合集:https://github.com/Honlan/DeepInterests

 在使用TensorFlow之前,有必要了解如下几个概念:

 

1. 计算是用图的形式表示的。

2. Sessions是执行的入口,类似于SparkContext。

3. 数据是用tensor表示的。

4. Variables用来表示可变状态,比如模型参数。

5. 使用feeds和fetches从运算节点输入和输出数据。

 

TensorFlow计算框架要求所有的计算都表示成图,节点在图中被称为运算op(operation简称)。一个运算可以获得零个或者多个Tensors,经过计算,可以产生零个或者多个Tensors。一个Tensor是一个多维数组,举个例子,可以把一批图像数据表示成一个4维浮点数组[batch, height, width, channels]

计算图是通过Session提交,一个Session决定图中的运算该到那个设备上去计算,比如是选CPU还是CPU。运算op产生的结果在python中是一个numpy.ndarray数组对象,在C和C++中是tensorflow::Tensor实例。

 

shape [2,3] 表示为数组的意思是第一维有两个元素,第二维有三个元素,如: [[1,2,3],[4,5,6]]

TensorFlow用张量这种数据结构来表示所有的数据。你可以把一个张量想象成一个n维的数组或列表。一个张量有一个静态类型和动态类型的维数。张量可以在图中的节点之间流通。在TensorFlow系统中,张量的维数来被描述为阶。

import tensorflow as tf  

a = tf.constant([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]],shape = [3,3])  

b = tf.initialize_all_variables()  
  
with tf.Session() as sess:  

    sess.run(b)  

    print(sess.run(a))  

[[ 1.  2.  3.]  

 [ 4.  5.  6.]  

 [ 7.  8.  9.]]  

 

2. 拓展知识

PET:

正电子发射型计算机断层显像(Positron Emission Computed Tomography),是

2025-05-17 22:18:13,061 - distributed.nanny - ERROR - Failed to initialize worker Traceback (most recent call last): File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/nanny.py", line 952, in run worker = worker_factory() File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/worker.py", line 715, in __init__ ServerNode.__init__( TypeError: __init__() got an unexpected keyword argument 'memory_terminate_fraction' 2025-05-17 22:18:13,102 - distributed.nanny - ERROR - Failed to start process Traceback (most recent call last): File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/nanny.py", line 452, in instantiate result = await self.process.start() File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/nanny.py", line 759, in start msg = await self._wait_until_connected(uid) File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/nanny.py", line 901, in _wait_until_connected raise msg["exception"] File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/nanny.py", line 952, in run worker = worker_factory() File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/worker.py", line 715, in __init__ ServerNode.__init__( Traceback (most recent call last): File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/deploy/spec.py", line 125, in _wrap_awaitable return await aw File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/core.py", line 512, in start raise self.__startup_exc File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/core.py", line 523, in start await wait_for(self.start_unsafe(), timeout=timeout) File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/utils.py", line 1957, in wait_for return await asyncio.wait_for(fut, timeout) File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/asyncio/tasks.py", line 442, in wait_for return await fut File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/nanny.py", line 369, in start_unsafe response = await self.instantiate() File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/nanny.py", line 452, in instantiate result = await self.process.start() File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/nanny.py", line 759, in start msg = await self._wait_until_connected(uid) File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/nanny.py", line 901, in _wait_until_connected raise msg["exception"] File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/nanny.py", line 952, in run worker = worker_factory() File "/data/cly_tmp/miniconda3/envs/geo_gpu/lib/python3.9/site-packages/distributed/worker.py", line 715, in __init__ ServerNode.__init__( TypeError: __init__() got an unexpected keyword argument 'memory_terminate_fraction' 2025-05-17 22:18:13,354 - INFO - 集群已启动: Scheduler地址 tcp://127.0.0.1:46234 2025-05-17 22:18:13,355 - INFO - 开始处理文件: /hqstudent/cly_tmp/data/ERA5_1961_2020_Sea_surface_temperature_four_month_two_times_025x025.nc
05-19
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值