目录
一、概述
HIP属于显式编程模型,需要在程序中明确写出并行控制语句,包括数据传输、核函数启动等。核函数是运行在DCU上的函数,在CPU端运行的部分称为主机端(主要是执行管理和启动),DCU端运行的部分称为设备端(用于执行计算)。大概的流程如下图:

①主机端将需要并行计算的数据通过hipMemcpy()传递给DCU(将CPU存储的内容传递给DCU的显存);
②调用核函数启动函数hipLaunchKernelGGL()启动DCU,开始执行计算;
③设备端将计算好的结果数据通过hipMemcpy()从DCU复制回CPU。
hipMemcpy()是阻塞式的,数据复制完成后才可以执行后续的程序;hipLanuchKernelGGL()是非阻塞式的,执行完后程序继续向后执行,但是在Kernel没有计算完成之前,最后一个hipMemcpy()是不会开始的,这是由于HIP的Stream机制。
二、程序实现
下面是对原子操作的具体实现,atomic.cpp:
#include <stdio.h>
#include <stdlib.h>
#include <hip/hip_runtime.h>
#include <hip/hip_runtime_api.h>
#include <sys/time.h>
struct my_timer
{
struct timeval start_time, end_time;
double time_use;
void start()
{
gettimeofday(&start_time, NULL);
}
void stop()
{
gettimeofday(&end_time, NULL);
time_use = (end_time.tv_sec - start_time.tv_sec)*1.0e6 + end_time.tv_usec - start_time.tv_usec;
};
__device__ int myAtomicAdd(int *address, int incr)
{
int guess = *address;
int oldValue = atomicCAS(address, guess, guess + incr);
while(oldValue != guess)
{
guess = oldValue;
oldValue = atomicCAS(address, guess, guess + incr);
}
return oldValue;
}
__global__ void atomics(int *shared_var, int *values_read, int N, int iters)
{
int i;
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if(tid >= N)
return;
values_read[tid] = atomicAdd(shared_var, 1);
for(i = 0; i < iters; i++)
{
atomicAdd(shared_var, 1);
}
}
__global__ void unsafe(int *shared_var, int *values_read, int N, int iters)
{
int i;
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if(tid >= N)
return;
int old = *shared_var;
*shared_var = old + 1;
values_read[tid] = old;
for(i = 0; i < iters; i++)
{
int old = *shared_var;
*shared_var = old + 1;
}
}
static void print_read_results(int *h_arr, int *d_arr, int N, const char *label)
{
int i;
int maxNumToPrint = 10;
int nToPrint = N > maxNumToPrint ? maxNumToPrint : N;
hipMemcpy(h_arr, d_arr, nToPrint * sizeof(int), hipMemcpyDeviceToHost);
printf("Threads performing %s operations read values", label);
for(i = 0; i < nToPrint; i++)
{
printf(" %d", h_arr[i]);
}
printf("\n");
}
int main(int argc, char *argv[])
{
int N = 64;
int block = 32;
int runs = 30;
int iters = 100000;
int r;
int *d_shared_var;
int h_shared_var_atomic, h_shared_var_unsafe;
int *d_values_read_atomic;
int *d_values_read_unsafe;
int *h_values_read;
hipMalloc((void **)&d_shared_var, sizeof(int));
hipMalloc((void **)&d_values_read_atomic, N * sizeof(int));
hipMalloc((void **)&d_values_read_unsafe, N * sizeof(int));
h_values_read = (int *)malloc(N * sizeof(int));
double atomic_mean_time = 0;
double unsafe_mean_time = 0;
my_timer timer1;
my_timer timer2;
for(r = 0; r < runs; r++)
{
timer1.start();
hipMemset(d_shared_var, 0x00, sizeof(int));
hipLaunchKernelGGL(atomics, N / block, block, 0, 0, d_shared_var, d_values_read_atomic, N, iters);
hipDeviceSynchronize();
timer1.stop();
atomic_mean_time += timer1.time_use/1000000;
hipMemcpy(&h_shared_var_atomic, d_shared_var, sizeof(int), hipMemcpyDeviceToHost);
timer2.start();
hipMemset(d_shared_var, 0x00, sizeof(int));
hipLaunchKernelGGL(unsafe, N/block, block, 0, 0, d_shared_var, d_values_read_unsafe, N, iters);
hipDeviceSynchronize();
timer2.stop();
unsafe_mean_time += timer2.time_use/1000000;
hipMemcpy(&h_shared_var_unsafe, d_shared_var, sizeof(int), hipMemcpyDeviceToHost);
}
printf("In total, %d runs using atomic operations took %f s\n", runs, atomic_mean_time);
printf(" Using atomic operations also produced an output of %d\n", h_shared_var_atomic);
printf("In total, %d runs using unsafe operations took %f s\n", runs, unsafe_mean_time);
printf(" Using unsafe operations also produced an output of %d\n", h_shared_var_unsafe);
print_read_results(h_values_read, d_values_read_atomic, N, "atomic");
print_read_results(h_values_read, d_values_read_atomic, N, "unsafe");
return 0;
}
三、编译运行
HIP程序采用hipcc编译。
运行结果: