原题:http://acm.hdu.edu.cn/showproblem.php?pid=3667
题意:
有n个点,m条有向边,需要运送k个物品;
下面m行,u v a c,表示从 u 到 v 的路最大容量为c,危险系数为a;
当你在危险系数为a的路上运送x个物品时,费用为a*x*x;
问最小费用,若不能运输k个物品,则输出-1;
思路:
费用流的模板中流量和费用呈线性关系,即a*x;
所以我们要将a*x*x变形;
在平方中,1*1 = 1,2*2 = 1+3, 3*3 = 1+3+5……
所以,对于同一条路来说,第i次走过这条的费用为(2*i+1)*a;注:0<=i<c;
我们对边进行拆边,将流量为c的边,拆成c条流量为1的边;
譬如,在某一条路上运输3个物品,因为我们把每一条路进行了拆分,所以3个物品就是要走三次,第一次费用为a,第二次为3a,第三次为5a,一共的费用就是9a;
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<queue>
#include<math.h>
using namespace std;
#define ll int
#define inf 0x3f3f3f3f
#define Inf 0x3FFFFFFFFFFFFFFFLL
#define N 605*605*2
#define M 605*605*4
int n, m, k;
struct Edge
{
ll to, cap, cost, nex;
Edge(){}
Edge(ll to,ll cap,ll cost,ll next):to(to),cap(cap),cost(cost),nex(next){}
} edge[M<<1];
ll head[N], edgenum;
ll D[N], A[N], P[N];
bool inq[N];
void add(ll from,ll to,ll cap,ll cost)
{
edge[edgenum] = Edge(to,cap,cost,head[from]);
head[from] = edgenum++;
edge[edgenum] = Edge(from,0,-cost,head[to]);
head[to] = edgenum++;
}
bool spfa(ll s, ll t, ll &flow, ll &cost)
{
for(ll i = 0; i <= t; i++) D[i] = inf;
memset(inq, 0, sizeof inq);
queue<ll>q;
q.push(s);
D[s] = 0; A[s] = inf;
while(!q.empty())
{
ll u = q.front(); q.pop();
inq[u] = 0;
for(ll i = head[u]; ~i; i = edge[i].nex)
{
Edge &e = edge[i];
if(e.cap && D[e.to] > D[u] + e.cost)
{
D[e.to] = D[u] + e.cost;
P[e.to] = i;
A[e.to] = min(A[u], e.cap);
if(!inq[e.to])
{inq[e.to]=1; q.push(e.to);}
}
}
}
if(D[t] == inf) return false;
cost += D[t] * A[t];
flow += A[t];
ll u = t;
while(u != s)
{
edge[ P[u] ].cap -= A[t];
edge[P[u]^1].cap += A[t];
u = edge[P[u]^1].to;
}
return true;
}
void Mincost(ll s,ll t)
{
ll flow = 0, cost = 0;
while(spfa(s, t, flow, cost));
if(flow == k)
printf("%d\n", cost);
else
printf("-1\n");
}
void init()
{
memset(head,-1,sizeof head);
edgenum = 0;
}
int main()
{
while(scanf("%d%d%d", &n, &m, &k)!=EOF)
{
init();
while(m--)
{
int u, v, a, c;
scanf("%d%d%d%d", &u, &v, &a, &c);
for(int i = 0;i<c;i++)
add(u, v, 1, (2*i+1)*a);
}
int s = 0, t = n;
add(s, 1, k, 0);
Mincost(s, t);
}
return 0;
}