Machine Learning---梯度下降

本文通过具体的代码示例对比了梯度下降法和随机梯度法在参数调整上的不同。梯度下降法每次迭代使用所有样本进行参数更新,而随机梯度法则每次仅用一个样本进行参数调整。

          对于Lost Function利用梯度下降的方法实现参数调整,梯度下降在每一次迭代的过程中需要全部样本参与,而随机梯度法或增量梯度法在迭代中利用样本中的一个样本更新参数。

          梯度下降达到全局最优:

          

#include <cstdlib>
#include <iostream>

using namespace std;
#define MAXITER 2200

int main(int argc, char *argv[])
{
    float x[4]={1,2,3,4};
    float y[4]={1.1,2.2,2.7,3.8};
    float theta0,theta1;
    float a=0.2;
    
   
    theta0=0;
    theta1=1.1;
    
    float ptheta0=theta0;
    float ptheta1=theta1;
    
    //梯度下降
    int iter=1;
    float diff;
    while(iter<=MAXITER)
    {
      for(int i=0;i<4;i++)
      {
        diff=(theta0+theta1*x[i]-y[i]);
        theta0=theta0-a*diff*1;
        theta1=theta1-a*diff*x[i];
      }
      
      //if((ptheta0-theta0)*(ptheta0-theta0)+(ptheta1-theta1)*(ptheta1-theta1)<0.1) break;
      //else
      //{
          ptheta0=theta0;
          ptheta1=theta1;
      //}
      iter=iter+1;
    }
    
    printf("iter=%d\n",iter);
    printf("theta0=%f,theta1=%f\n",theta0,theta1);
    
    system("PAUSE");
    return EXIT_SUCCESS;
}
         随机梯度法接近全局最优:

         

#include <cstdlib>
#include <iostream>

using namespace std;
#define MAXITER 2200
/*********************
**Y=theta0+theta1X
*********************/
int main(int argc, char *argv[])
{
    float x[4]={1,2,3,4};
    float y[4]={1.1,2.2,2.7,3.8};
    float theta0,theta1;
    float a=0.2;
    
   
    theta0=0;
    theta1=1.1;
    
    float ptheta0=theta0;
    float ptheta1=theta1;
    
    //梯度下降
    int iter=1;
    float diff;
    while(iter<=MAXITER)
    {
     int i=(iter-1)%4;
      
        diff=(theta0+theta1*x[i]-y[i]);
        theta0=theta0-a*diff*1;
        theta1=theta1-a*diff*x[i];
     
      
      //if((ptheta0-theta0)*(ptheta0-theta0)+(ptheta1-theta1)*(ptheta1-theta1)<0.1) break;
      //else
      //{
          ptheta0=theta0;
          ptheta1=theta1;
      //}
      iter=iter+1;
    }
    
    printf("iter=%d\n",iter);
    printf("theta0=%f,theta1=%f\n",theta0,theta1);
    
    system("PAUSE");
    return EXIT_SUCCESS;
}

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值