不同路径问题:
62.A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3 Output: 28
class Solution {
public:
int uniquePaths(int m, int n) {
if(m==1&&n==1)
return 1;
int** p=new int* [m];
for(int i=0;i<m;i++)
p[i]=new int[n];
p[0][0]=0;
for(int i=1;i<m;i++)
p[i][0]=1;
for(int j=1;j<n;j++)
p[0][j]=1;
for(int i=1;i<m;i++)
for(int j=1;j<n;j++)
{
p[i][j]=p[i][j-1]+p[i-1][j];
}
return p[m-1][n-1];
}
};
构建递归关系的时候,注意考虑递归出口。
提交问题是遇到报错reference binding to null pointer of type 'value_type',原因vector嵌套时没有初始化大小,下标访问越界。
参考链接:https://blog.youkuaiyun.com/m0_38088298/article/details/79249044