2018年7月22日训练日记

本文总结了作者在牛客网多校第二场比赛中的经历,包括使用复杂二分、随机数hash与二维树状数组等算法解决问题的经验。此外,还讨论了在小白月赛中遇到的读题问题,并分享了如何利用分块打表技巧解决难题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天的主要任务是补昨天牛客网多校第二场的题目。

补了一道复杂二分和随机数hash+二维树状数组

然后看了rand和srand函数的资料

做了一道简单的线段树区间合并题目

晚上打了小白月赛,怎么这么难。。。不过第一次用分块打表。。。爽,J题被卡了输入,真是气死

针对本次小白月赛,我本人出现了严重的问题:读题问题。

由于这次比赛出题人故意卡题意,导致我J题上来交了很多发WA。但是之后题面更新了,加了两句,我没仔细看,结果是输入不保证合法。我厚着脸皮让大佬帮我找代码错误,大佬说我没读题,我之后再读就发现了这个问题,于是我就说题意有问题。可能是大佬做这道题的时候已经更新了题面,于是他就说题意没问题。。。然后我就和大佬吵了起来。。。这应该是我参加各种比赛以来第一次出现这样的问题,我也早已经意识到自己的错误。是我先求别人帮忙却因为这种无聊的问题而吵起来,本身我就有很严重的问题。比赛的时候不能因为这种无聊的问题而耽误时间,只要找到问题所在不影响做题就行了。而且我个人脾气大也是我最大的缺点。。。总之,以后多注意公告,及时解决题意的问题,还有就是一些冲突往往是因小事而起,发生什么情况都要考虑一下当前的场合,当前的主要任务是什么。

对于G题,第一次用分块打表+暴力解决问题,这也是之前遇到过的题型,以后要记住。

I题关于区间更新区间查询问题,出题人考的是前缀后缀,而用线段树会MLE、段错误,用树状数组可过。出题人其实想卡掉树状数组和线段树的。关于用前缀后缀来完成区间更新区间查询的题型还是头一次见,明天好好研读一下相关的博客资料。

杭电多校加油。。。

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值