Python-Matplotlib可视化(2)——自定义颜色绘制精美统计图

前言

matplotlib提供的所有绘图都带有默认样式。虽然这可以进行快速绘图,但有时可能需要自定义绘图的颜色和样式,以对绘制更加精美、符合审美要求的图像。matplotlib的设计考虑到了此需求,可以很容易调整matplotlib图形的颜色和样式。

自定义颜色

在生活中,我们可能对色彩的搭配与审美有自己的偏好,因此,我们可能希望matplotlib遵循自定义的颜色方案,以便所绘制的图形更好地适合文档或网页。
matplotlib中有多种定义颜色的方法,常见的方法包括:

  1. 三元组(Triplets):颜色可以描述为一个实数三元组,即颜色的红、蓝、绿分量,其中每个分量在[0,1]区间内。因此,(1.0, 0.0, 0.0)表示纯红色,而(1.0, 0.0, 1.0)则表示粉色。

  2. 四元组(Quadruplets):它们前三个元素与三元组定义相同,第四个元素定义透明度值。此值也在[0,1]区间内。将图形渲染到图片文件中时,使用透明颜色可以使绘制图形与背景进行混合。

  3. 预定义名称:matplotlib将标准HTML颜色名称解释为实际颜色。例如,字符串red即可表示为红色。同时一些某些颜色的具有简洁的别名,如下表所示:

    别名 颜色 显示
    b blue
    g green
    r red
    c cyan
    m magenta
    y yellow
    k black
    w white
  4. HTML颜色字符串:matplotlib可以将HTML颜色字符串解释为实际颜色。这些字符串被定义为#RRGGBB,其中RR、GG和BB是使用十六进制编码的红色、绿色和蓝色分量。

  5. 灰度字符串:matplotlib将浮点值的字符串表示形式解释为灰度,例如0.75表示中浅灰色。

使用自定义颜色绘制曲线图

通过设置plt.plot()函数的参数color(或等效的简写为c),可以设置曲线的颜色,如下所示:

import numpy as np
import matplotlib.pyplot as plt
def pdf(x, mu, sigma):
    a = 1. / (sigma * np.sqrt(2. * np.pi))
    b = -1. / (2. * sigma ** 2)
    return a * np.exp(b * (x - mu) ** 2)
x = np.linspace(-6, 6, 1000)
for i in range(5):
    samples = np.random.standard_normal(50)
    mu, sigma = np.mean(samples), np.std(samples)
    plt.plot(x, pdf(x, mu, sigma), color = str(.15*(i+1)))
plt.plot(x, pdf(x, 0., 1.), color = 'k')
plt.plot(x, pdf(x, 0.2, 1.), color = '#00ff00')
plt.plot(x, pdf(x, 0.4, 1.), color = (0.9,0.9,0.0))
plt.plot(x, pdf(x
评论 124
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值