poj 3176 Cow Bowling 【水题】

本文介绍了一种使用动态规划解决寻找三角形网格中从顶点到底边的最大路径和问题的方法。通过逐步构建DP表来确定最高得分路径,并提供了一个C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this: 

          7



        3   8



      8   1   0



    2   7   4   4



  4   5   2   6   5

Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame. 

Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

Input

Line 1: A single integer, N 

Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

Output

Line 1: The largest sum achievable using the traversal rules

Sample Input

5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

Sample Output

30

Hint:

The highest score is achievable by traversing the cows as shown above.

很明显,考察动态规划得知识,找出状态转移方程 dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+a[i][j];

#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int a[400][400];
int dp[400][400];
int main (){
    ios::sync_with_stdio(false);
	int n,i,j;
	cin>>n;
	memset(dp,0,sizeof(dp));
	for(i=1;i<=n;i++){
		for(j=1;j<=i;j++)
		  cin>>a[i][j];
	}
	for(int i=1;i<=n;i++)
        dp[n][i] = a[n][i];  //将最后一行的dp值先用对应的a数组表示
	for(i=n-1;i>=1;i--){
		for(j=1;j<=i;j++){
			dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+a[i][j]; //逐层往上求值,最后的dp[1][1]就是答案
		}
	}
	cout<<dp[1][1]<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值