547. 省份数量

题目

有 n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c 直接相连,那么城市 a 与城市 c 间接相连。

省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。

给你一个 n x n 的矩阵 isConnected ,其中 isConnected[i][j] = 1 表示第 i 个城市和第 j 个城市直接相连,而 isConnected[i][j] = 0 表示二者不直接相连。

返回矩阵中 省份 的数量。

示例 1:
在这里插入图片描述

输入:isConnected = [[1,1,0],[1,1,0],[0,0,1]]
输出:2

示例 2:
在这里插入图片描述

输入:isConnected = [[1,0,0],[0,1,0],[0,0,1]]
输出:3

提示:

  • 1 <= n <= 200
  • n == isConnected.length
  • n == isConnected[i].length
  • isConnected[i][j] 为 1 或 0
  • isConnected[i][i] == 1
  • isConnected[i][j] == isConnected[j][i]

官方题解

方法一:深度优先搜索

深度优先搜索的思路是很直观的。遍历所有城市,对于每个城市,如果该城市尚未被访问过,则从该城市开始深度优先搜索,通过矩阵 isConnected 得到与该城市直接相连的城市有哪些,这些城市和该城市属于同一个连通分量,然后对这些城市继续深度优先搜索,直到同一个连通分量的所有城市都被访问到,即可得到一个省份。遍历完全部城市以后,即可得到连通分量的总数,即省份的总数。

class Solution {
    public int findCircleNum(int[][] isConnected) {
        int provinces = isConnected.length;
        boolean[] visited = new boolean[provinces];
        int circles = 0;
        for (int i = 0; i < provinces; i++) {
            if (!visited[i]) {
                dfs(isConnected, visited, provinces, i);
                circles++;
            }
        }
        return circles;
    }

    public void dfs(int[][] isConnected, boolean[] visited, int provinces, int i) {
        for (int j = 0; j < provinces; j++) {
            if (isConnected[i][j] == 1 && !visited[j]) {
                visited[j] = true;
                dfs(isConnected, visited, provinces, j);
            }
        }
    }
}

方法二:广度优先搜索

也可以通过广度优先搜索的方法得到省份的总数。对于每个城市,如果该城市尚未被访问过,则从该城市开始广度优先搜索,直到同一个连通分量中的所有城市都被访问到,即可得到一个省份。

class Solution {
    public int findCircleNum(int[][] isConnected) {
        int provinces = isConnected.length;
        boolean[] visited = new boolean[provinces];
        int circles = 0;
        Queue<Integer> queue = new LinkedList<Integer>();
        for (int i = 0; i < provinces; i++) {
            if (!visited[i]) {
                queue.offer(i);
                while (!queue.isEmpty()) {
                    int j = queue.poll();
                    visited[j] = true;
                    for (int k = 0; k < provinces; k++) {
                        if (isConnected[j][k] == 1 && !visited[k]) {
                            queue.offer(k);
                        }
                    }
                }
                circles++;
            }
        }
        return circles;
    }
}

方法三:并查集

计算连通分量数的另一个方法是使用并查集。初始时,每个城市都属于不同的连通分量。遍历矩阵 isConnected,如果两个城市之间有相连关系,则它们属于同一个连通分量,对它们进行合并。

遍历矩阵 isConnected 的全部元素之后,计算连通分量的总数,即为省份的总数。

class Solution {
    public int findCircleNum(int[][] isConnected) {
        int provinces = isConnected.length;
        int[] parent = new int[provinces];
        for (int i = 0; i < provinces; i++) {
            parent[i] = i;
        }
        for (int i = 0; i < provinces; i++) {
            for (int j = i + 1; j < provinces; j++) {
                if (isConnected[i][j] == 1) {
                    union(parent, i, j);
                }
            }
        }
        int circles = 0;
        for (int i = 0; i < provinces; i++) {
            if (parent[i] == i) {
                circles++;
            }
        }
        return circles;
    }

    public void union(int[] parent, int index1, int index2) {
        parent[find(parent, index1)] = find(parent, index2);
    }

    public int find(int[] parent, int index) {
        if (parent[index] != index) {
            parent[index] = find(parent, parent[index]);
        }
        return parent[index];
    }
}
boolean[] visited = new boolean[provinces]
意思是创建布尔类型的数组,这个布尔类型数组的长度是provinces.
学到了学到了。

用到了二维数组,二维数组我还不太懂。去学习一下。

博客:https://blog.youkuaiyun.com/weixin_36564655/article/details/79615479

二维数组其实是一位数组的嵌套(每一行看做一个内层的一维数组)
在这里插入图片描述
格式1: 动态初始化

数据类型 数组名 [ ][ ] = new 数据类型[m][n]
数据类型 [ ][ ]  数组名 = new 数据类型[m][n]
数据类型 [ ]   数组名 [ ] = new 数据类型[m][n]

举例:

int [ ][ ]  arr=new  int [5][3];  也可以理解为“5行3例”

格式2: 静态初始化

数据类型 [ ][ ]   数组名 = {{元素1,元素2....},{元素1,元素2....},{元素1,元素2....}.....};

举例:

int [ ][ ]  arr={{22,15,32,20,18},{12,21,25,19,33},{14,58,34,24,66},};

静态初始化可用于不规则二维数组的初始化

public static void main(String[]args){
		int [][] arr=new int[][]{{4,5,6,8},{2,3},{1,6,9}};
 
		System.out.println(arr.length);//输出行数
		System.out.println(arr[0].length);//输出列数	
	}
输出结果:
3
4

总结:有很多知识点还不会,也没有思路。方法也不熟练。总的来说有点懵。

【完美复现】面向配电网韧性提升的移动储能预布局与动态调度策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于IEEE33节点的配电网韧性提升方法,重点研究了移动储能系统的预布局与动态调度策略。通过Matlab代码实现,提出了一种结合预配置和动态调度的两阶段优化模型,旨在应对电网故障或极端事件时快速恢复供电能力。文中采用了多种智能优化算法(如PSO、MPSO、TACPSO、SOA、GA等)进行对比分析,验证所提策略的有效性和优越性。研究不仅关注移动储能单元的初始部署位置,还深入探讨其在故障发生后的动态路径规划与电力支援过程,从而全面提升配电网的韧性水平。; 适合人群:具备电力系统基础知识和Matlab编程能力的研究生、科研人员及从事智能电网、能源系统优化等相关领域的工程技术人员。; 使用场景及目标:①用于科研复现,特别是IEEE顶刊或SCI一区论文中关于配电网韧性、应急电源调度的研究;②支撑电力系统在灾害或故障条件下的恢复力优化设计,提升实际电网应对突发事件的能力;③为移动储能系统在智能配电网中的应用提供理论依据和技术支持。; 阅读建议:建议读者结合提供的Matlab代码逐模块分析,重点关注目标函数建模、约束条件设置以及智能算法的实现细节。同时推荐参考文中提及的MPS预配置与动态调度上下两部分,系统掌握完整的技术路线,并可通过替换不同算法或测试系统进一步拓展研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值