题目
有 n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c 直接相连,那么城市 a 与城市 c 间接相连。
省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。
给你一个 n x n 的矩阵 isConnected ,其中 isConnected[i][j] = 1 表示第 i 个城市和第 j 个城市直接相连,而 isConnected[i][j] = 0 表示二者不直接相连。
返回矩阵中 省份 的数量。
示例 1:

输入:isConnected = [[1,1,0],[1,1,0],[0,0,1]]
输出:2
示例 2:

输入:isConnected = [[1,0,0],[0,1,0],[0,0,1]]
输出:3
提示:
- 1 <= n <= 200
- n == isConnected.length
- n == isConnected[i].length
- isConnected[i][j] 为 1 或 0
- isConnected[i][i] == 1
- isConnected[i][j] == isConnected[j][i]
官方题解
方法一:深度优先搜索
深度优先搜索的思路是很直观的。遍历所有城市,对于每个城市,如果该城市尚未被访问过,则从该城市开始深度优先搜索,通过矩阵 isConnected 得到与该城市直接相连的城市有哪些,这些城市和该城市属于同一个连通分量,然后对这些城市继续深度优先搜索,直到同一个连通分量的所有城市都被访问到,即可得到一个省份。遍历完全部城市以后,即可得到连通分量的总数,即省份的总数。
class Solution {
public int findCircleNum(int[][] isConnected) {
int provinces = isConnected.length;
boolean[] visited = new boolean[provinces];
int circles = 0;
for (int i = 0; i < provinces; i++) {
if (!visited[i]) {
dfs(isConnected, visited, provinces, i);
circles++;
}
}
return circles;
}
public void dfs(int[][] isConnected, boolean[] visited, int provinces, int i) {
for (int j = 0; j < provinces; j++) {
if (isConnected[i][j] == 1 && !visited[j]) {
visited[j] = true;
dfs(isConnected, visited, provinces, j);
}
}
}
}
方法二:广度优先搜索
也可以通过广度优先搜索的方法得到省份的总数。对于每个城市,如果该城市尚未被访问过,则从该城市开始广度优先搜索,直到同一个连通分量中的所有城市都被访问到,即可得到一个省份。
class Solution {
public int findCircleNum(int[][] isConnected) {
int provinces = isConnected.length;
boolean[] visited = new boolean[provinces];
int circles = 0;
Queue<Integer> queue = new LinkedList<Integer>();
for (int i = 0; i < provinces; i++) {
if (!visited[i]) {
queue.offer(i);
while (!queue.isEmpty()) {
int j = queue.poll();
visited[j] = true;
for (int k = 0; k < provinces; k++) {
if (isConnected[j][k] == 1 && !visited[k]) {
queue.offer(k);
}
}
}
circles++;
}
}
return circles;
}
}
方法三:并查集
计算连通分量数的另一个方法是使用并查集。初始时,每个城市都属于不同的连通分量。遍历矩阵 isConnected,如果两个城市之间有相连关系,则它们属于同一个连通分量,对它们进行合并。
遍历矩阵 isConnected 的全部元素之后,计算连通分量的总数,即为省份的总数。
class Solution {
public int findCircleNum(int[][] isConnected) {
int provinces = isConnected.length;
int[] parent = new int[provinces];
for (int i = 0; i < provinces; i++) {
parent[i] = i;
}
for (int i = 0; i < provinces; i++) {
for (int j = i + 1; j < provinces; j++) {
if (isConnected[i][j] == 1) {
union(parent, i, j);
}
}
}
int circles = 0;
for (int i = 0; i < provinces; i++) {
if (parent[i] == i) {
circles++;
}
}
return circles;
}
public void union(int[] parent, int index1, int index2) {
parent[find(parent, index1)] = find(parent, index2);
}
public int find(int[] parent, int index) {
if (parent[index] != index) {
parent[index] = find(parent, parent[index]);
}
return parent[index];
}
}
boolean[] visited = new boolean[provinces]
意思是创建布尔类型的数组,这个布尔类型数组的长度是provinces.
学到了学到了。
用到了二维数组,二维数组我还不太懂。去学习一下。
博客:https://blog.youkuaiyun.com/weixin_36564655/article/details/79615479
二维数组其实是一位数组的嵌套(每一行看做一个内层的一维数组)

格式1: 动态初始化
数据类型 数组名 [ ][ ] = new 数据类型[m][n]
数据类型 [ ][ ] 数组名 = new 数据类型[m][n]
数据类型 [ ] 数组名 [ ] = new 数据类型[m][n]
举例:
int [ ][ ] arr=new int [5][3]; 也可以理解为“5行3例”
格式2: 静态初始化
数据类型 [ ][ ] 数组名 = {{元素1,元素2....},{元素1,元素2....},{元素1,元素2....}.....};
举例:
int [ ][ ] arr={{22,15,32,20,18},{12,21,25,19,33},{14,58,34,24,66},};
静态初始化可用于不规则二维数组的初始化
public static void main(String[]args){
int [][] arr=new int[][]{{4,5,6,8},{2,3},{1,6,9}};
System.out.println(arr.length);//输出行数
System.out.println(arr[0].length);//输出列数
}
输出结果:
3
4
总结:有很多知识点还不会,也没有思路。方法也不熟练。总的来说有点懵。
651

被折叠的 条评论
为什么被折叠?



