20. Valid Parentheses

本文介绍了一种使用栈数据结构来判断括号是否正确配对的方法。通过遍历字符串并将左括号压入栈中,遇到右括号时检查是否与栈顶元素匹配并弹出,最终确保所有括号正确闭合。

Given a string containing just the characters ‘(‘, ‘)’, ‘{‘, ‘}’, ‘[’
and ‘]’, determine if the input string is valid.

The brackets must close in the correct order, “()” and “()[]{}” are
all valid but “(]” and “([)]” are not.


题目描述:给出一组括号,括号是不是一一对应的,比如 ( ) 或者 { } [ ] ( )算合法的括号,(] 或者 ( [ ) ] 都不合法。

思路:这道题用loop 就非常的麻烦,但是用栈就是非常的简单,其实这道题就是考察的对栈的使用
具体的思路如下:将前括号压入栈中,如果栈顶遇到与之相匹配后括号就弹出,最后检查栈是否为空,如果为空那么就说明全部为合法的括号

public boolean isValid(String s) {
    Stack<Character> stack = new Stack<>();
    char[] arr = s.toCharArray();
    stack.push(arr[0]);

    for (int i = 1; i < s.length(); i++){
        if (!stack.isEmpty() && isMatch(stack.peek(),arr[i])){
            stack.pop();
        }else {
            stack.push(arr[i]);
        }
    }

    return stack.isEmpty();


}

public boolean isMatch(char a, char b){
    return (a == '(' && b == ')') || (a == '[' && b == ']') || (a == '{' && b == '}');
}

导论区的写法更加简练

Stack<Character> stack = new Stack<Character>();
    for (char c : s.toCharArray()) {
        if (c == '(')
            stack.push(')');
        else if (c == '{')
            stack.push('}');
        else if (c == '[')
            stack.push(']');
        else if (stack.isEmpty() || stack.pop() != c)
            return false;
    }
    return stack.isEmpty();
最长有效括号子串问题是经典的算法问题,目标是找出一个只包含 `'('` 和 `')'` 的字符串中最长的连续有效括号子串的长度。该问题可以通过多种方法解决,其中使用动态规划(Dynamic Programming)和栈(Stack)是最常见的两种方式。 ### 动态规划方法 动态规划方法通过构建一个 `dp` 数组来记录以每个字符结尾的最长有效子串长度。具体步骤如下: - 初始化一个长度为 `n` 的数组 `dp`,初始值为 0。 - 遍历字符串,当遇到 `')'` 时进行判断: - 如果前一个字符是 `'('`,则判断是否形成 `()` 形式的有效括号,若成立,则更新当前 `dp[i]`。 - 如果前一个字符是 `')'`,则检查是否存在嵌套的有效括号结构,并更新当前 `dp[i]`。 ```c #include <stdio.h> #include <string.h> int longestValidParentheses(char* s) { int n = strlen(s); int dp[n]; memset(dp, 0, sizeof(dp)); int maxLen = 0; for (int i = 1; i < n; i++) { if (s[i] == ')') { if (s[i - 1] == '(') { dp[i] = (i >= 2 ? dp[i - 2] : 0) + 2; } else if (i - dp[i - 1] > 0 && s[i - dp[i - 1] - 1] == '(') { dp[i] = dp[i - 1] + ((i - dp[i - 1] >= 2) ? dp[i - dp[i - 1] - 2] : 0) + 2; } maxLen = (dp[i] > maxLen) ? dp[i] : maxLen; } } return maxLen; } ``` ### 栈方法 栈方法通过维护一个栈来记录括号的索引,用于判断括号是否匹配并计算有效长度。具体步骤如下: - 初始化一个栈,初始时压入 `-1` 作为基准值。 - 遍历字符串,遇到 `'('` 时压入栈。 - 遇到 `')'` 时弹出栈顶元素,如果栈为空,则压入当前索引;否则计算当前索引与栈顶元素的差值,更新最大长度。 ```c #include <stdio.h> #include <string.h> #define MAX(a, b) ((a) > (b) ? (a) : (b)) int longestValidParentheses(char* s) { int n = strlen(s); int stack[n + 1]; int top = 0; stack[0] = -1; int maxLen = 0; for (int i = 0; i < n; i++) { if (s[i] == '(') { stack[++top] = i; } else { top--; if (top == -1) { stack[++top] = i; } else { maxLen = MAX(maxLen, i - stack[top]); } } } return maxLen; } ``` ### 复杂度分析 - **时间复杂度**:两种方法均为 $O(n)$,其中 $n$ 是字符串的长度。 - **空间复杂度**: - 动态规划方法为 $O(n)$,需要额外的 `dp` 数组。 - 栈方法为 $O(n)$,需要额外的栈空间。 ### 应用场景 - **动态规划**:适用于对内存使用要求不高的场景,且需要快速实现。 - **栈方法**:适用于内存敏感的场景,且需要高效处理嵌套结构的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值