1、批量变量名修改
pay_data<-upData(pay_data,rename=c(X1="top_up_users",
X2="top_up_mon",
X3="top_up_times",
X4="tp_date"))
2、分组计算同一变量的多个统计值
#数据分类汇总
基础方式:
top_up_data_para1%>%group_by(cur_month)%>%
summarise(top_up_month_female=sum(top_up_female),
max_female=max(top_up_female),
min_female=min(top_up_female),
median_female=median(top_up_female),
top_up_month_male=sum(top_up_male),
max_male=max(top_up_male),
min_male=min(top_up_male),
median_male=median(top_up_male))
#优化以上计算方式:
优化方式1:
top_up_data_para1%>%group_by(cur_month)%>%
summarise(across(c("top_up_users","top_up_times"),
list(max,min,median,sum),.names="{.col}_{.fn}"))
优化方式2:
top_