import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
df = pd.read_csv(‘datatest.csv’, names=[‘出行’, ‘游戏时间’, ‘冰激凌’, ‘配对结果’])
print(df)
取所有的行,1,2,3列作为特征,4列标签结果
feature = df.iloc[:, 0:3]
print(feature)
target = df.iloc[:, -1]
print(target)
划分数据集test_size:测试集占比 random_state:随机数种子
训练集的特征数据,测试集的特征数据,训练集的目标数据,测试集的目标数据
x_train, x_test, y_train, y_test = train_test_split(feature, target, test_size=0.21, random_state=1500)
print(x_train.shape, x_test.shape)
标准化
ss = StandardScaler()
x_train = ss.fit_transform(x_train)
print(x_train)
创建KMN算法对象,指定K值
knn = KNeighborsClassifier(n_neighbors=3)
训练模型(训练集的特征数据和目标数据)
knn.fit(x_train, y_train)
用测试集验证数据,得到评价指标
测试集数据也必须标准化,但是不需要再计算均值和方差,训练集进行标准化的时候已经找到了均值和方差
已经找到转换规则,我们把这个规则用在了训练集上,同样我们可以直接用在测试集上,所以在测试集上的处理,我们只需要标准化
x_test = ss.transform(x_test)
score = knn.score(x_test, y_test)
print(f’模型评分{score}')
预测
x_test1 = [[20000, 2.54, 7.65], [2322, 5, 2]]
x_test1 = ss.transform(x_test1)
y_predict = knn.predict(x_test1)
print(y_predict)
本文介绍了如何使用pandas和sklearn库从CSV数据中提取特征和标签,通过train_test_split进行数据集划分,标准化数据,训练KNN分类器,并进行模型评估。最后展示了如何对新数据进行预测。
1830

被折叠的 条评论
为什么被折叠?



