AVL平衡树实现

 
#ifndef BELANCETREE_INCLUDED
#define BELANCETREE_INCLUDED
#include <string>
//#include <cstdlib>
using namespace std;
#define ERROR 0
#define LH +1 //左高
#define RH -1 //右高
#define EH 0  //等高
//#define __BINARY_TREE  //是否使用二叉树
#define __STRING_DATA   //data是否为string类型

typedef string BsTreeType;

struct BsTreeNode
{
     short bf; //节点平衡因子
     struct BsTreeNode *lchild, *rchild;
     BsTreeType data;
};

typedef BsTreeNode Node;
typedef Node* PNode;

class BslanceTree
{
   public:
    inline BslanceTree(void);
    //排序二叉树
#ifdef __BINARY_TREE
    inline bool AddNode(const BsTreeType & data); //非字符串型
    inline bool delNode(const BsTreeType & data);
    inline bool FindNode(const BsTreeType & data);
    inline bool TraverBsTree(const PNode & pnode);
#endif
    //bbst平衡二叉树
	bool   InsertAvl(const BsTreeType & data);
    inline PNode & GetRoot(void);
	bool   DelAvl(const BsTreeType & data);
    inline ~BslanceTree(void);

   protected:

    inline bool GR(const string & sdata, const string & ddata);
    inline bool EQ(const string & sdata, const string & ddata);
#ifndef __STRING_DATA
    inline bool GR(const BsTreeType & sdata, const BsTreeType & ddata);
    inline bool EQ(const BsTreeType & sdata, const BsTreeType & ddata);
#endif
    inline void CleanTree(PNode & pnode);
           bool DelAvlNode(PNode & pnode);
		   bool InsertAVL(PNode & pnode);
    inline void RightBalance(PNode & pnode);
    inline void  LeftBalance(PNode & pnode);
    inline void     L_Rotate(PNode & pnode);
    inline void     R_Rotate(PNode & pnode);
  private:
#ifdef __BINARY_TREE
	PNode m_pnode;
#endif

    PNode m_Root;
	BsTreeType data;
	bool hight_change;
};

inline BslanceTree::BslanceTree(void)
{
    m_Root =  NULL;
#ifdef __BINARY_TREE
	m_pnode = NULL;
#endif

}

////////////////////////////////////////////////////////////////////////
#ifdef __BINARY_TREE

inline bool BslanceTree::AddNode(const BsTreeType & data)
{
   PNode pnode = new Node;
   if (pnode == NULL)
      return false;
   pnode->lchild = NULL;
   pnode->rchild = NULL;
   pnode->data   = data;

   if (m_Root == NULL)
    {
        m_Root = pnode;
        return true;
    }

   m_pnode = NULL;
   if ( BslanceTree::FindNode(data) ) //node have been create
      return true;
   if (m_pnode == NULL)
      return false;
   if (BslanceTree::GR(m_pnode->data, data))
      m_pnode->rchild = pnode;
   else
      m_pnode->lchild = pnode;
   return true;
}

inline bool BslanceTree::FindNode(const BsTreeType & data)
{//not string type
    m_pnode    = m_Root;
    PNode next = m_pnode;
    while (next)
    {
        if (BslanceTree::EQ(next->data, data))
           return true;
        m_pnode = next;
        if (BslanceTree::GR(next->data, data))
           next = next->rchild; //right big and left small
        else
           next = next->lchild;
    }
    return false;
}

inline bool BslanceTree::delNode(const BsTreeType & data)
{
   if ( BslanceTree::FindNode(data) )
   {
       if (m_pnode == NULL)
          return false;
       if (m_pnode->lchild == NULL)
       {
           if (m_pnode->rchild != NULL)
		   {
			   PNode p = m_pnode;
               m_pnode = m_pnode->rchild;
			   delete p;
			   p = NULL;
		   }
           else
		   {
             delete m_pnode;
             m_pnode = NULL;
		   }
           return true;
       }
       else
       {
           if (m_pnode->rchild == NULL)
           {
		     PNode p = m_pnode;
             m_pnode = m_pnode->lchild;

             delete p;
             p = NULL;
           }
           else
           {
			  PNode pre = m_pnode->lchild;
			  while (pre->rchild)
				pre = pre->rchild;
			  if (pre == NULL)
				  return false;
			  m_pnode->data = pre->data;//交换值
			  delete pre;
			  pre = NULL;
           }//else
         return true;
       }
   }
   return false;
}


inline bool BslanceTree::TraverBsTree(const PNode & pnode)
{
    if (pnode != NULL)
    {
      BslanceTree::TraverBsTree(pnode->lchild);
	  cout << "data : " << pnode->data << endl;
      BslanceTree::TraverBsTree(pnode->rchild);
    }
}

#endif////////////__BINARY_TREE//////////////////////////

#ifndef __STRING_DATA
inline bool BslanceTree::GR(const BsTreeType & sdata, const BsTreeType & ddata)
{
    return sdata > ddata ? true : false;
}

inline bool BslanceTree::EQ(const BsTreeType & sdata, const BsTreeType & ddata)
{
    return sdata == ddata ? true : false;
}
#endif
inline bool BslanceTree::GR(const string & sdata, const string & ddata)
{
    if (!sdata.size() || !ddata.size())
       exit(ERROR);
    return strcmp(sdata.c_str(), ddata.c_str()) > 0 ? true : false;
}

inline bool BslanceTree::EQ(const string & sdata, const string & ddata)
{
    if (!sdata.size() || !ddata.size())
       exit(ERROR);
    return strcmp(sdata.c_str(), ddata.c_str()) == 0 ? true : false;
}

inline BslanceTree::~BslanceTree(void)
{
    BslanceTree::CleanTree(m_Root);
}

inline void BslanceTree::CleanTree(PNode & pnode)
{
    if (pnode != NULL)
    {
        BslanceTree::CleanTree(pnode->lchild);
        BslanceTree::CleanTree(pnode->rchild);
        delete pnode;
        pnode = NULL;
    }
}

bool BslanceTree::InsertAVL(PNode & pnode)
{
    if (pnode == NULL)
    {
      pnode = new Node;
      if (pnode == NULL)
        exit(ERROR);
      pnode->data = BslanceTree::data;
      pnode->lchild = pnode->rchild = NULL;
      pnode->bf = EH, BslanceTree::hight_change = true;
    }
    else
    {
        if ( BslanceTree::EQ(pnode->data, BslanceTree::data) )
        {//节点已经存在
            BslanceTree::hight_change = false;
            return false;
        }

        if ( BslanceTree::GR(BslanceTree::data, pnode->data) )
        {//插入到右子树中
            if ( !BslanceTree::InsertAVL(pnode->rchild) )
               return false;
            if (BslanceTree::hight_change)
            {//已经插入到右子树中而且树已经长高
                switch (pnode->bf)
                {
                    case LH:  //原左子树比右子树高,现在等高
                        pnode->bf = EH; BslanceTree::hight_change = false; break;
                    case EH:  //原本左右子树等高,现在右子树比左子树要高, 所以树长高
                        pnode->bf = RH; BslanceTree::hight_change = true; break;
                    case RH:  //原来右子树比左子树要高,需要作平衡处理
                        BslanceTree::RightBalance(pnode);
                        BslanceTree::hight_change = false; break;//bf的变化由函数RightBalance(pnode)说了算
                }//switch
            }//if_t
        }//if_B
        else
        {//插入到左子树中
            if ( !BslanceTree::InsertAVL(pnode->lchild) )
               return false;
            if (BslanceTree::hight_change)
            {
                switch (pnode->bf)
                {
                    case LH:  //原来左子树比右子树高,需要作平衡处理
                        BslanceTree::LeftBalance(pnode);
                        BslanceTree::hight_change = false; break;//bf的变化由函数LeftBalance(pnode)说了算
                    case EH:  //原来右子树与左子树等高,现在左子树长高,所以树长高
                        pnode->bf = LH; BslanceTree::hight_change = true; break;
                    case RH:  //原来右子树比左子树要高,现在要变成等高
                        pnode->bf = EH; BslanceTree::hight_change = false; break;
                }//switch
            }//if_t
        }//else
    }//else
    return true;
}

inline void BslanceTree::RightBalance(PNode & pnode)
{//右平衡处理
    PNode rc = pnode->rchild;
    switch (rc->bf)
    {
        case RH: //新插入的节点在pnode右孩子的右子树,要作单左旋转处理
            pnode->bf = rc->bf = EH;
            BslanceTree::L_Rotate(pnode); break;
		case EH: // new
			pnode->bf = RH, rc->bf = LH;
			BslanceTree::L_Rotate(pnode); break;
        case LH: //新插入的节点在右孩子的左子树上,要作双旋转处理
            PNode ld = rc->lchild;  //ld指向pnode右孩子的左子树的根
            switch (ld->bf)
            {
                case LH: pnode->bf = EH; rc->bf = RH; break;
                case EH: pnode->bf = EH; rc->bf = EH; break;
                case RH: pnode->bf = LH; rc->bf = EH;
            }//sw_ld
            ld->bf = EH;
            BslanceTree::R_Rotate(pnode->rchild);
            BslanceTree::L_Rotate(pnode);
    }//sw_ld
}

inline void BslanceTree::LeftBalance(PNode & pnode)
{//左平衡处理
    PNode lc = pnode->lchild;
    switch (lc->bf)
    {
        case LH: //新插入的节点在左子树,需要单右旋转处理
            pnode->bf = lc->bf = EH;
            BslanceTree::R_Rotate(pnode); break;
		case EH: // new
			pnode->bf =LH, lc->bf = RH;
			BslanceTree::R_Rotate(pnode); break;
        case RH: //新插入的节点在右子树,要作双旋转处理
            PNode rd = lc->rchild; //rd为pnode左孩子的右子树的根
            switch (rd->bf)
            {
                case LH: lc->bf = EH; pnode->bf = RH; break;
                case EH: lc->bf = pnode->bf = EH; break;
                case RH: lc->bf = LH; pnode->bf = EH; break;
            }
            rd->bf = EH;
            BslanceTree::L_Rotate(pnode->lchild);
            BslanceTree::R_Rotate(pnode);
    }//sw_lc
}

inline void BslanceTree::L_Rotate(PNode & pnode)
{//向左旋转,pnode最终还是指向更新后的根节点
    PNode rc = pnode->rchild;
    pnode->rchild = rc->lchild;
    rc->lchild = pnode;
    pnode = rc;  //更新根节点
}

inline void BslanceTree::R_Rotate(PNode & pnode)
{//向右旋转,pnode最终还是指向更新后的根节点
    PNode lc = pnode->lchild;
    pnode->lchild = lc->rchild;
    lc->rchild = pnode;
    pnode = lc;
}

bool BslanceTree::DelAvlNode(PNode & pnode)
{
	if (pnode == NULL)
		return false;
	if ( BslanceTree::EQ(pnode->data, BslanceTree::data) )
	{//delete node
		BslanceTree::hight_change = true; //树变矮
		if (pnode->lchild == NULL)
		{
			if (pnode->rchild != NULL)
				pnode = pnode->rchild;
			else
			{
				delete pnode;
				pnode = NULL;
			}
			return true;
		}
		else
		{
			if (pnode->rchild == NULL)
				pnode = pnode->lchild;
			else
			{//查找前驱
				PNode pre = pnode->lchild;
				while (pre->rchild)
					pre = pre->rchild;

				//交换值
				pnode->data = pre->data;
				BslanceTree::data = pre->data;

				if ( !BslanceTree::DelAvlNode(pnode->lchild) )
					return false;
				if (BslanceTree::hight_change)
				{//变矮
					switch (pnode->bf)
					{
					case LH: //较高的子树被缩短
						pnode->bf = EH;
						cout << "371\n";
						BslanceTree::hight_change = true; break;
						break;
					case EH: //原来平等
						pnode->bf = RH;
						cout << "376\n";
						BslanceTree::hight_change = false; break;
					case RH: //较低的子树被缩短
						if (pnode->rchild != NULL)
							if (pnode->rchild->bf == EH)
								BslanceTree::hight_change = false;
						BslanceTree::RightBalance(pnode); 
						cout << "383\n";
						break;
					}//sw_pn
				}
			}//else
		 return true;
		}//else
	}//if_Bs
	//m_ptemp_node = pnode; //保存父节点
	if ( BslanceTree::GR(BslanceTree::data, pnode->data) )
	{//右子树
		if ( !BslanceTree::DelAvlNode(pnode->rchild) )
			return false;
		if (BslanceTree::hight_change)
		{//变矮
			switch (pnode->bf)
			{
			case LH: //较低的子树被缩短
				if (pnode->lchild != NULL)
					if (pnode->lchild->bf == EH)
						BslanceTree::hight_change = false;
				BslanceTree::LeftBalance(pnode);
				cout << "405\n";
				break;
			case EH: //原来平等
				pnode->bf = LH;
				cout << "409\n";
				BslanceTree::hight_change = false; break;
			case RH: //较高的子树被缩短
				pnode->bf = EH;
				cout << "413\n";
				BslanceTree::hight_change = true; break;
			}//sw_pn
		}
	}
	else
	{
		if ( !BslanceTree::DelAvlNode(pnode->lchild) )
			return false;
		if (BslanceTree::hight_change)
		{//变矮
			switch (pnode->bf)
			{
			case LH: //较高的子树被缩短
				pnode->bf = EH;
				cout << "403\n";
				BslanceTree::hight_change = true; break;
				break;
			case EH: //原来平等
				pnode->bf = RH;
				cout << "409\n";
				BslanceTree::hight_change = false; break;
			case RH: //较低的子树被缩短
				if (pnode->rchild != NULL)
					if (pnode->rchild->bf == EH)
						BslanceTree::hight_change = false;
				BslanceTree::RightBalance(pnode); 
				cout << "413\n";
				break;
			}//sw_pn
		}
	}

	return true;
}


inline PNode & BslanceTree::GetRoot(void)
{
    return m_Root;
}

bool BslanceTree::DelAvl(const BsTreeType & data)
{
	BslanceTree::data = data;
	BslanceTree::hight_change = true;
	if ( !BslanceTree::DelAvlNode(m_Root) )
		return false;
	return true;
}

bool BslanceTree::InsertAvl(const BsTreeType & data)
{
	BslanceTree::data = data;
	BslanceTree::hight_change = true;
	if ( !BslanceTree::InsertAVL(m_Root) )
		return false;
	return true;
}

#endif // BELANCETREE_INCLUDED

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值