cifar10训练 test 0.894

该博客详细描述了一个用于CIFAR10数据集的图像分类深度学习网络架构,包括多层卷积、池化、批量归一化、尺度调整及全连接层等,旨在实现高效准确的图像特征提取与分类。

name: "CIFAR10_full"
layer {
  name: "cifar"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mean_file: "mean.binaryproto"
    #scale:0.00390625
    mirror:1
    crop_size:28
  }
  data_param {
    source: "cifar10_train_lmdb"
    batch_size: 256
    backend: LMDB
  }
}
layer {
  name: "cifar"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    mean_file: "mean.binaryproto"
   #scale:0.00390625
    mirror:1
    crop_size: 28
  }
  data_param {
    source: "cifar10_test_lmdb"
    batch_size: 100
    backend: LMDB
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 32
    pad:2
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.0001
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu1_1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "conv1_1"
  type: "Convolution"
  bottom: "conv1"
  top: "conv1_1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 32
    pad:1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.0001
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "bn_conv1"
  bottom: "conv1_1"
  top: "conv1_1"
  type: "BatchNorm"
  param {
    lr_mult: 0
    decay_mult: 0
    }
  param {
    lr_mult: 0
    decay_mult: 0
    }
  param {
    lr_mult: 0
    decay_mult: 0
    }
  batch_norm_param {
     use_global_stats: false
   }
}
layer {
  name: "scale_conv1"
  bottom: "conv1_1"
  top: "conv1_1"
  type: "Scale"
  param {
  lr_mult: 0.1
  decay_mult: 0
  }
  param {
  lr_mult: 0.1
  decay_mult: 0
  }
  scale_param {
  bias_term: true
  }
}

layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1_1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 32
    pad:2
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu2_2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "conv2_2"
  type: "Convolution"
  bottom: "conv2"
  top: "conv2_2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 32
    pad:1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "bn_conv2"
  bottom: "conv2_2"
  top: "conv2_2"
  type: "BatchNorm"
  param {
    lr_mult: 0
    decay_mult: 0
    }
  param {
    lr_mult: 0
    decay_mult: 0
    }
  param {
    lr_mult: 0
    decay_mult: 0
    }
  batch_norm_param {
     use_global_stats: false
   }
}
layer {
  name: "scale_conv2"
  bottom: "conv2_2"
  top: "conv2_2"
  type: "Scale"
  param {
  lr_mult: 0.1
  decay_mult: 0
  }
  param {
  lr_mult: 0.1
  decay_mult: 0
  }
  scale_param {
  bias_term: true
  }
}

layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2_2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

layer {
  name: "conv3"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3"
  convolution_param {
    num_output: 64
    pad:2
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.05
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu3_3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "conv3_3"
  type: "Convolution"
  bottom: "conv3"
  top: "conv3_3"
  convolution_param {
    num_output: 64
    pad:1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.05
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "bn_conv3"
  bottom: "conv3_3"
  top: "conv3_3"
  type: "BatchNorm"
}
layer {
  name: "bn_conv3"
  bottom: "conv3_3"
  top: "conv3_3"
  type: "BatchNorm"
  param {
    lr_mult: 0
    decay_mult: 0
    }
  param {
    lr_mult: 0
    decay_mult: 0
    }
  param {
    lr_mult: 0
    decay_mult: 0
    }
  batch_norm_param {
     use_global_stats: false
   }
}
layer {
  name: "scale_conv3"
  bottom: "conv3_3"
  top: "conv3_3"
  type: "Scale"
  param {
  lr_mult: 0.1
  decay_mult: 0
  }
  param {
  lr_mult: 0.1
  decay_mult: 0
  }
  scale_param {
  bias_term: true
  }
}


layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3_3"
  top: "conv3_3"
}
layer {
  name: "pool3"
  type: "Pooling"
  bottom: "conv3_3"
  top: "pool3"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "pool3"
  top: "conv4"
  convolution_param {
    num_output: 64
    pad:2
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.05
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu4_4"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}
layer {
  name: "conv4_4"
  type: "Convolution"
  bottom: "conv4"
  top: "conv4_4"
  convolution_param {
    num_output: 64
    pad:1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.05
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "bn_conv4"
  bottom: "conv4_4"
  top: "conv4_4"
  type: "BatchNorm"
}
layer {
  name: "bn_conv4"
  bottom: "conv4_4"
  top: "conv4_4"
  type: "BatchNorm"
  param {
    lr_mult: 0
    decay_mult: 0
    }
  param {
    lr_mult: 0
    decay_mult: 0
    }
  param {
    lr_mult: 0
    decay_mult: 0
    }
  batch_norm_param {
     use_global_stats: false
   }
}
layer {
  name: "scale_conv4"
  bottom: "conv4_4"
  top: "conv4_4"
  type: "Scale"
  param {
  lr_mult: 0.1
  decay_mult: 0
  }
  param {
  lr_mult: 0.1
  decay_mult: 0
  }
  scale_param {
  bias_term: true
  }
}

layer {
  name: "relu4"
  type: "ReLU"
  bottom: "conv4_4"
  top: "conv4_4"
}
layer {
  name: "pool4"
  type: "Pooling"
  bottom: "conv4_4"
  top: "pool4"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "conv5"
  type: "Convolution"
  bottom: "pool4"
  top: "conv5"
  convolution_param {
    num_output: 128
    pad:2
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.05
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu5_5"
  type: "ReLU"
  bottom: "conv5"
  top: "conv5"
}
layer {
  name: "conv5_5"
  type: "Convolution"
  bottom: "conv5"
  top: "conv5_5"
  convolution_param {
    num_output: 128
    pad:1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.05
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "bn_conv5"
  bottom: "conv5_5"
  top: "conv5_5"
  type: "BatchNorm"
}
layer {
  name: "bn_conv5"
  bottom: "conv5_5"
  top: "conv5_5"
  type: "BatchNorm"
  param {
    lr_mult: 0
    decay_mult: 0
    }
  param {
    lr_mult: 0
    decay_mult: 0
    }
  param {
    lr_mult: 0
    decay_mult: 0
    }
  batch_norm_param {
     use_global_stats: false
   }
}
layer {
  name: "scale_conv5"
  bottom: "conv5_5"
  top: "conv5_5"
  type: "Scale"
  param {
  lr_mult: 0.1
  decay_mult: 0
  }
  param {
  lr_mult: 0.1
  decay_mult: 0
  }
  scale_param {
  bias_term: true
  }
}

layer {
  name: "relu5"
  type: "ReLU"
  bottom: "conv5_5"
  top: "conv5_5"
}
layer {
  name: "pool5"
  type: "Pooling"
  bottom: "conv5_5"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}


layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool5"
  top: "ip1"
  param {
    lr_mult: 1
    decay_mult: 10
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 128
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
    }
  }
}

 

layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
    decay_mult: 10
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TRAIN
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip2"
  bottom: "label"
  top: "loss"
}

solver:

# reduce learning rate after 120 epochs (60000 iters) by factor 0f 10
# then another factor of 10 after 10 more epochs (5000 iters)

# The train/test net protocol buffer definition
net: "cifar10_full_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of CIFAR10, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 200
# Carry out testing every 1000 training iterations.
test_interval: 1000
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.0001
momentum: 0.9
weight_decay: 0.004
# The learning rate policy
#lr_policy: "multistep"
#gamma:0.1
#stepvalue:5000

lr_policy: "inv"
gamma: 0.0001
power: 0.75

# Display every 200 iterations
display: 200
# The maximum number of iterations
max_iter: 100000
# snapshot intermediate results
snapshot: 10000
#snapshot_format: LMDB
snapshot_prefix: "cifar10_full"
# solver mode: CPU or GPU
solver_mode: GPU
type:"SGD"

截图:

<think>好的,我现在需要帮助用户解决如何在TensorFlow中加载和使用他们下载的cifar-10-python.tar.gz数据集文件的问题。用户之前已经提供了一些引用资料,我需要结合这些引用以及之前我的回答来给出正确的指导。 首先,用户提到他们下载了cifar-10-python.tar.gz文件,而不是默认的二进制版本。根据引用[3],用户需要将数据集文件放在正确的位置,通常是在datasets目录下,并且不需要解压。但根据我的经验,tf.keras.datasets.cifar10.load_data()函数可能需要特定的目录结构。可能需要解压文件到特定目录,比如cifar-10-batches-py,里面包含data_batch_1到data_batch_5等文件。 接下来,引用[1]和[2]提到了两种方法:直接使用load_data()指定路径,或者使用自定义的load_data函数。用户之前的问题中,我的回答是使用tf.keras.datasets.cifar10.load_data(path=...)的方法,但根据引用[2],可能需要另一个方法,即导入自定义的load_data函数,这可能需要用户保存一个load_local_cifar10.py的文件。不过,根据TensorFlow的文档,通常情况下,直接指定路径到包含解压后的文件的目录即可。 用户可能遇到的问题是,如果直接使用tar.gz文件而没有解压,TensorFlow可能无法自动识别。因此需要确认是否需要解压。根据引用[3],用户应该将下载的tar.gz文件放入datasets文件夹,但可能需要解压,因为TensorFlow的load_data函数通常期望已经解压的文件结构。比如,解压后生成cifar-10-batches-py目录,里面包含数据批次文件。 此外,用户可能混淆了不同版本的CIFAR-10数据集,比如python版本和二进制版本。cifar-10-python.tar.gz对应的解压后的目录结构可能与二进制版本不同,但TensorFlow的load_data函数应该能够处理,只要路径正确。 因此,正确的步骤应该是: 1. 下载cifar-10-python.tar.gz文件。 2. 解压该文件到指定目录,如~/datasets/cifar-10-python。 3. 使用tf.keras.datasets.cifar10.load_data(path='...')指定到解压后的目录。 4. 如果路径正确,函数会自动加载数据。 可能需要检查解压后的目录结构是否正确。例如,正确的路径应包含文件如data_batch_1, test_batch等,而不是二进制文件。 如果用户按照这些步骤操作后仍然无法加载,可能需要检查路径是否正确,或者是否存在文件权限问题。另外,需要确认TensorFlow版本是否支持直接从本地路径加载CIFAR-10数据集。 另外,用户可能需要处理不同的解压方式,比如在Linux下使用tar命令解压,或者在Windows下使用工具解压,确保文件结构正确。 总结来说,关键点是正确解压数据集到指定目录,并在load_data函数中指定正确的路径。同时,确保数据集的文件结构与TensorFlow的预期一致。</think>根据引用内容和TensorFlow最佳实践,以下是使用本地下载的$cifar-10-python.tar.gz$数据集进行开发的完整方案: ### 一、数据集准备 1. **解压数据集文件** ```bash mkdir -p ~/datasets/cifar-10-python tar xzvf cifar-10-python.tar.gz -C ~/datasets/cifar-10-python ``` 2. **验证目录结构** 解压后应包含以下文件结构: ``` cifar-10-batches-py/ ├── batches.meta ├── data_batch_1 ├── data_batch_2 ├── data_batch_3 ├── data_batch_4 ├── data_batch_5 ├── readme.html └── test_batch ``` ### 二、TensorFlow加载代码 ```python import tensorflow as tf from tensorflow.keras import layers # 设置本地数据集路径(根据引用[3]建议的目录结构) cifar10_path = "~/datasets/cifar-10-python/cifar-10-batches-py" # 加载本地数据集(参考引用[1]方法) def load_local_cifar10(path): """自定义加载函数实现(参考引用[2]思路)""" return tf.keras.datasets.cifar10.load_data(path) (x_train, y_train), (x_test, y_test) = load_local_cifar10(cifar10_path) # 数据预处理(增强版) def preprocess(image, label): image = tf.image.convert_image_dtype(image, tf.float32) # 自动归一化 image = tf.image.random_flip_left_right(image) # 数据增强 return image, tf.one_hot(label, depth=10) # 创建高效数据管道(引用[3]建议的优化方法) train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_dataset = ( train_dataset .shuffle(5000) .map(preprocess, num_parallel_calls=tf.data.AUTOTUNE) .batch(256) .prefetch(tf.data.AUTOTUNE) ) test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)) test_dataset = test_dataset.map(preprocess).batch(256) ``` ### 三、模型开发建议 1. **优化CNN结构**(参考引用[2]扩展) ```python model = tf.keras.Sequential([ layers.Conv2D(32, (3,3), activation='relu', padding='same', input_shape=(32,32,3)), layers.BatchNormalization(), layers.Conv2D(32, (3,3), activation='relu', padding='same'), layers.MaxPooling2D((2,2)), layers.Conv2D(64, (3,3), activation='relu', padding='same'), layers.BatchNormalization(), layers.Conv2D(64, (3,3), activation='relu', padding='same'), layers.MaxPooling2D((2,2)), layers.GlobalAveragePooling2D(), layers.Dense(256, activation='relu'), layers.Dropout(0.5), layers.Dense(10, activation='softmax') ]) ``` 2. **训练配置** ```python model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'] ) # 使用EarlyStopping优化(引用[4]建议的实践) callbacks = [ tf.keras.callbacks.EarlyStopping(patience=5), tf.keras.callbacks.ModelCheckpoint('best_model.h5') ] history = model.fit( train_dataset, epochs=50, validation_data=test_dataset, callbacks=callbacks ) ``` ### 四、常见问题解决 1. **路径验证方法**: ```python import os print(os.listdir(cifar10_path)) # 应显示['data_batch_1',...,'test_batch'] ``` 2. **数据集完整性检查**: ```python print(f"训练集维度: {x_train.shape}") # 应为(50000, 32, 32, 3) print(f"测试集维度: {x_test.shape}") # 应为(10000, 32, 32, 3) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值