"""Various learning rate decay functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
def exponential_decay(learning_rate, global_step, decay_steps, decay_rate,
staircase=False, name=None):
"""Applies exponential decay to the learning rate.
When training a model, it is often recommended to lower the learning rate as
the training progresses. This function applies an exponential decay function
to a provided initial learning rate. It requires a `global_step` value to
compute the decayed learning rate. You can just pass a TensorFlow variable
that you increment at each training step.
The function returns the decayed learning rate. It is computed as:
python
decayed_learning_rate = learning_rate *
decay_rate ^ (global_step / decay_steps)
If the argument `staircase` is `True`, then `global_step / decay_steps` is an
integer division and the decayed learning rate follows a staircase function.
Example: decay every 100000 steps with a base of 0.96:
python
...
global_step = tf.Variable(0, trainable=False)
starter_learning_rate = 0.1
learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step,
100000, 0.96, staircase=True)
# Passing global_step to minimize() will increment it at each step.
learning_step = (
tf.train.GradientDescentOptimizer(learning_rate)
.minimize(...my loss..., global_step=global_step)
)
Args:
learning_rate: A scalar `float32` or `float64` `Tensor` or a
Python number. The initial learning rate.
global_step: A scalar `int32` or `int64` `Tensor` or a Python number.
Global step to use for the decay computation. Must not be negative.
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
Must be positive. See the decay computation above.
decay_rate: A scalar `float32` or `float64` `Tensor` or a
Python number. The decay rate.
staircase: Boolean. If `True` decay the learning rate at discrete intervals
name: String. Optional name of the operation. Defaults to
'ExponentialDecay'.
Returns:
A scalar `Tensor` of the same type as `learning_rate`. The decayed
learning rate.
Raises:
ValueError: if `global_step` is not supplied.
"""
if global_step is None:
raise ValueError("global_step is required for exponential_decay.")
with ops.name_scope(name, "ExponentialDecay",
[learning_rate, global_step,
decay_steps, decay_rate]) as name:
learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate")
dtype = learning_rate.dtype
global_step = math_ops.cast(global_step, dtype)
decay_steps = math_ops.cast(decay_steps, dtype)
decay_rate = math_ops.cast(decay_rate, dtype)
p = global_step / decay_steps
if staircase:
p = math_ops.floor(p)
return math_ops.multiply(learning_rate, math_ops.pow(decay_rate, p),
name=name)
Tensorflow指数衰减源码
最新推荐文章于 2022-04-10 22:30:41 发布