SparkSession.scala

SparkSession详解:核心组件与DataFrame/Dataset操作
本文深入探讨SparkSession在Spark 2.2.0中的作用,它是Spark SQL和DataFrame/Dataset编程的入口点。通过SparkSession.builder()创建或获取会话,配置Spark运行时环境,如master、appName等。会话状态包括共享状态、SQL配置、UDF等。此外,详细介绍了如何创建和操作DataFrame和Dataset,包括从各种数据源创建、转换和查询数据。同时,SparkSession还提供了与目录(如Hive)交互的方法以及SQL支持。

Spark源码之SparkSession,Spark版本号2.2.0

//SparkSession 源码
/**使用数据集和数据框架API编程Spark的入口点。
*在预先创建的环境中(例如命令行、笔记本电脑),使用生成器获取现有会话:
* SparkSession.builder().getOrCreate()
*构建器也可以用来创建一个新的会话:
*   SparkSession.builder
*     .master("local")
*     .appName("Word Count")
*     .config("spark.some.config.option", "some-value")
*     .getOrCreate()
*
*/


@InterfaceStability.Stable
class SparkSession private(
	//与此Spark会话关联的Spark上下文。
    @transient val sparkContext: SparkContext,
    //如果提供,请使用现有的共享状态而不是创建一个新的
    @transient private val existingSharedState: Option[SharedState],
    //如果提供,则从父级继承所有会话状态(即临时视图、SQL配置、UDF等)。
    @transient private val parentSessionState: Option[SessionState],
    /*扩展点:
    * -分析器规则。
	* -检查分析规则
	* -优化器规则。
	* -规划策略。
	* -自定义解析器。
	* -(外部)目录监听器。
	*/
    @transient private[sql] val extensions: SparkSessionExtensions)
  extends Serializable with Closeable with Logging { self =>

//构造器
  private[sql] def this(sc: SparkContext) {
    this(sc, None, None, new SparkSessionExtensions)
  }
//沿着堆栈追踪,直到发现第一个spark方法,还跟踪第一个(最深的)用户方法、文件和行。
  sparkContext.assertNotStopped()


  def version: String = SPARK_VERSION

  /* ----------------------- *
   |  与会话相关的状态  |
   * ----------------------- */

//会话间共享的状态,包括“SparkContext”、缓存数据、侦听器和与外部系统交互的目录。
  @InterfaceStability.Unstable
  @transient
  lazy val sharedState: SharedState = {
    //如果存在共享状态就用,不存在使用括号内新建的
    existingSharedState.getOrElse(new SharedState(sparkContext))
  }

 
 //如果parentSessionState不为空,sessionState将是parentSessionState的拷贝
  @InterfaceStability.Unstable
  @transient
  lazy val sessionState: SessionState = {
    parentSessionState
      .map(_.clone(this))
      .getOrElse {
        SparkSession.instantiateSessionState(
          SparkSession.sessionStateClassName(sparkContext.conf),
          self)
      }
  }

 //包装SQLContext,以便向后兼容
  @transient
  val sqlContext: SQLContext = new SQLContext(this)

  //Spark运行时配置接口
  @transient lazy val conf: RuntimeConfig = new RuntimeConfig(sessionState.conf)

  //监听执行指标
  @Experimental
  @InterfaceStability.Evolving
  def listenerManager: ExecutionListenerManager = sessionState.listenerManager


  //一组方法,这些方法被认为是实验性的,但可用于连接到查询计划器以获得高级功能。
  @Experimental
  @InterfaceStability.Unstable
  def experimental: ExperimentalMethods = sessionState.experimentalMethods

  //用于注册用户定义函数(UDF)的方法集合。
  def udf: UDFRegistration = sessionState.udfRegistration

  //返回允许管理“this”上所有活动的“StreamingQuery”的“StreamingQueryManager”。
  @Experimental
  @InterfaceStability.Unstable
  def streams: StreamingQueryManager = sessionState.streamingQueryManager

  //使用隔离的SQL配置启动新会话,临时表、已注册的函数是隔离的,但共享底层的“SparkContext”和缓存数据。
  def newSession(): SparkSession = {
    new SparkSession(sparkContext, Some(sharedState), parentSessionState = None, extensions)
  }

 //创建此“SparkSession”的相同副本,共享基础“SparkContext”和共享状态。复制此会话的所有状态(即SQL配置、临时表、已注册函数),并使用与此会话相同的共享状态设置克隆的会话。克隆的会话独立于此会话,也就是说,任一会话中的任何非全局更改都不会反映在另一个会话中
 
  private[sql] def cloneSession(): SparkSession = {
    val result = new SparkSession(sparkContext, Some(sharedState), Some(sessionState), extensions)
    result.sessionState // 强制复制sessiState,因为sessionState是lazy所以一调用就激活了
    result
  }


  /* ---------------------- *
   |  创建 DataFrames 的方法  |
   * --------------------- */

 //返回一个没有行或列的“数据帧”。
  @transient
  lazy val emptyDataFrame: DataFrame = {
    createDataFrame(sparkContext.emptyRDD[Row], StructType(Nil))
  }

  //创建一个类型为T的新[[Dataset]],其中包含0个元素。
  @Experimental
  @InterfaceStability.Evolving
  def emptyDataset[T: Encoder]: Dataset[T] = {
    val encoder = implicitly[Encoder[T]]
    new Dataset(self, LocalRelation(encoder.schema.toAttributes), encoder)
  }

  //从产品的RDD(例如case类,元组)中创建一个DataFrame。
  @Experimental
  @InterfaceStability.Evolving
  def createDataFrame[A <: Product : TypeTag](rdd: RDD[A]): DataFrame = {
    SparkSession.setActiveSession(this)
    val encoder = Encoders.product[A]
    Dataset.ofRows(self, ExternalRDD(rdd, self)(encoder))
  }

 //从产品的本地序列创建一个“数据帧”。
  @Experimental
  @InterfaceStability.Evolving
  def createDataFrame[A <: Product : TypeTag](data: Seq[A]): DataFrame = {
    SparkSession.setActiveSession(this)
    val schema = ScalaReflection.schemaFor[A].dataType.asInstanceOf[StructType]
    val attributeSeq = schema.toAttributes
    Dataset.ofRows(self, LocalRelation.fromProduct(attributeSeq, data))
  }

// 使用给定架构从包含[[行]]的“RDD”创建“DataFrame”。确保所提供RDD的每个[[Row]]的结构与所提供的模式匹配是很重要的。否则,将出现运行时异常。
  @DeveloperApi
  @InterfaceStability.Evolving
  def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame = {
    createDataFrame(rowRDD, schema, needsConversion = true)
  }

 //使用给定架构从包含[[Row]]的“JavaRDD”创建“DataFrame”。确保所提供RDD的每个[[Row]]的结构与所提供的模式匹配是很重要的。否则,将出现运行时异常。
  @DeveloperApi
  @InterfaceStability.Evolving
  def createDataFrame(rowRDD: JavaRDD[Row], schema: StructType): DataFrame = {
    createDataFrame(rowRDD.rdd, schema)
  }

 //从`java.util.List`包含使用给定架构的[[行]]的。确保所提供列表的每个[[Row]]的结构与所提供的模式匹配是很重要的。否则,将出现运行时异常。
  @DeveloperApi
  @InterfaceStability.Evolving
  def createDataFrame(rows: java.util.List[Row], schema: StructType): DataFrame = {
    Dataset.ofRows(self, LocalRelation.fromExternalRows(schema.toAttributes, rows.asScala))
  }

 //将模式应用于Java bean的RDD。
 //警告:由于在Java Bean中没有保证字段的顺序,
 //SELECT *查询将以未定义的顺序返回列。
  def createDataFrame(rdd: RDD[_], beanClass: Class[_]): DataFrame = {
    val attributeSeq: Seq[AttributeReference] = getSchema(beanClass)
    val className = beanClass.getName
    val rowRdd = rdd.mapPartitions { iter =>
    // BeanInfo是不可序列化的,因此我们必须为每个分区远程重新发现它。
      SQLContext.beansToRows(iter, Utils.classForName(className), attributeSeq)
    }
    Dataset.ofRows(self, LogicalRDD(attributeSeq, rowRdd)(self))
  }

  //将模式应用于Java bean的RDD。
  //警告:由于在Java Bean中没有保证字段的顺序,
  //SELECT *查询将以未定义的顺序返回列。
  def createDataFrame(rdd: JavaRDD[_], beanClass: Class[_]): DataFrame = {
    createDataFrame(rdd.rdd, beanClass)
  }

  //对Java bean列表应用模式。
  //警告:由于在Java Bean中没有保证字段的顺序,
  //SELECT *查询将以未定义的顺序返回列。 
  def createDataFrame(data: java.util.List[_], beanClass: Class[_]): DataFrame = {
    val attrSeq = getSchema(beanClass)
    val rows = SQLContext.beansToRows(data.asScala.iterator, beanClass, attrSeq)
    Dataset.ofRows(self, LocalRelation(attrSeq, rows.toSeq))
  }

 //将为外部数据源创建的“BaseRelation”转换为“数据帧”。
  def baseRelationToDataFrame(baseRelation: BaseRelation): DataFrame = {
    Dataset.ofRows(self, LogicalRelation(baseRelation))
  }

  /* ------------------------------- *
   |  创建 DataSets  的方法            |
   * ------------------------------- */

 //从给定类型的本地数据序列创建[[Dataset]]。此方法需要一个编码器(用于将类型为“T”的JVM对象与内部Spark SQL表示形式进行转换),该编码器通常通过“SparkSession”的隐式自动创建,或者可以通过调用[[Encoders]]上的静态方法显式创建。
  @Experimental
  @InterfaceStability.Evolving
  def createDataset[T : Encoder](data: Seq[T]): Dataset[T] = {
    val enc = encoderFor[T]
    val attributes = enc.schema.toAttributes
    val encoded = data.map(d => enc.toRow(d).copy())
    val plan = new LocalRelation(attributes, encoded)
    Dataset[T](self, plan)
  }

  //创建方法的重载:数据源RDD
  @Experimental
  @InterfaceStability.Evolving
  def createDataset[T : Encoder](data: RDD[T]): Dataset[T] = {
    Dataset[T](self, ExternalRDD(data, self))
  }

 //数据源java.util.List
  @Experimental
  @InterfaceStability.Evolving
  def createDataset[T : Encoder](data: java.util.List[T]): Dataset[T] = {
    createDataset(data.asScala)
  }

 //创建一个[[Dataset]],其中有一个名为“id”的“LongType”列,包含范围从0到“end”(独占)的元素,步长值为1。
  @Experimental
  @InterfaceStability.Evolving
  def range(end: Long): Dataset[java.lang.Long] = range(0, end)

 //创建一个[[Dataset]],其中有一个名为“id”的“LongType”列,包含从“start”到“end”(独占)范围内的元素,步长值为1。
  @Experimental
  @InterfaceStability.Evolving
  def range(start: Long, end: Long): Dataset[java.lang.Long] = {
    range(start, end, step = 1, numPartitions = sparkContext.defaultParallelism)
  }

  //创建一个[[Dataset]],其中有一个名为“id”的“LongType”列,该列包含从“start”到“end”(独占)范围内的元素,并带有步长值。
  @Experimental
  @InterfaceStability.Evolving
  def range(start: Long, end: Long, step: Long): Dataset[java.lang.Long] = {
    range(start, end, step, numPartitions = sparkContext.defaultParallelism)
  }

 //创建一个[[Dataset]],其中有一个名为“id”的“LongType”列,该列包含从“start”到“end”(独占)范围内的元素,并指定了一个step值和分区号。
  @Experimental
  @InterfaceStability.Evolving
  def range(start: Long, end: Long, step: Long, numPartitions: Int): Dataset[java.lang.Long] = {
    new Dataset(self, Range(start, end, step, numPartitions), Encoders.LONG)
  }

 //从RDD[Row]创建一个DataFrame。
 //用户可以指定是否将输入的行转换为Catalyst行。
  private[sql] def internalCreateDataFrame(
      catalystRows: RDD[InternalRow],
      schema: StructType): DataFrame = {
    // TODO: 当rowRDD是另一个数据帧并被应用时,使用MutableProjection
    // 在任何字段数据类型上,模式都与现有模式不同
    val logicalPlan = LogicalRDD(schema.toAttributes, catalystRows)(self)
    Dataset.ofRows(self, logicalPlan)
  }

//从RDD[Row]创建一个DataFrame。
//用户可以指定是否应该将输入行转换为Catalyst行。
  private[sql] def createDataFrame(
      rowRDD: RDD[Row],
      schema: StructType,
      needsConversion: Boolean) = {
    // TODO: 当rowRDD是另一个数据帧并被应用时,使用MutableProjection
    // 在任何字段数据类型上,模式都与现有模式不同。
    val catalystRows = if (needsConversion) {
      val encoder = RowEncoder(schema)
      rowRDD.map(encoder.toRow)
    } else {
      rowRDD.map{r: Row => InternalRow.fromSeq(r.toSeq)}
    }
    val logicalPlan = LogicalRDD(schema.toAttributes, catalystRows)(self)
    Dataset.ofRows(self, logicalPlan)
  }


  /* ------------------------- *
   |  目录相关的方法              |
   * ------------------------- */

 //用户可以通过该接口创建、删除、更改或查询底层数据库、表、函数等。
  @transient lazy val catalog: Catalog = new CatalogImpl(self)

  //以“数据帧”的形式返回指定的表/视图。
  //tableName 参数 : 是指定表或视图的限定或非限定名称。如果指定了数据库,它将从数据库中标识表/视图。否则,它首先尝试查找具有给定名称的临时视图,然后匹配当前数据库中的表/视图。注意,全局临时视图数据库在这里也是有效的。
  def table(tableName: String): DataFrame = {
    table(sessionState.sqlParser.parseTableIdentifier(tableName))
  }

  private[sql] def table(tableIdent: TableIdentifier): DataFrame = {
    Dataset.ofRows(self, sessionState.catalog.lookupRelation(tableIdent))
  }

  /* ----------------- *
   |  一些其他的         |
   * ----------------- */

//使用Spark执行SQL查询,并将结果作为“DataFrame”返回。
//用于SQL解析的dialect可以用'spark.sql.dialect'配置。
  def sql(sqlText: String): DataFrame = {
    Dataset.ofRows(self, sessionState.sqlParser.parsePlan(sqlText))
  }

 //返回一个[[DataFrameReader]],可用于将非流式数据作为“DataFrame”读入。
  def read: DataFrameReader = new DataFrameReader(self)

 //返回一个' DataStreamReader ',它可以作为' DataFrame '读取流数据。
  @InterfaceStability.Evolving
  def readStream: DataStreamReader = new DataStreamReader(self)

  //执行一些代码块,并将执行该块所用的时间打印到标准输出。这仅在Scala中可用,主要用于交互式测试和调试。
  def time[T](f: => T): T = {
    val start = System.nanoTime()
    val ret = f
    val end = System.nanoTime()
    // scalastyle:off println
    println(s"Time taken: ${(end - start) / 1000 / 1000} ms")
    // scalastyle:on println
    ret
  }

  //禁用样式检查器,使"implicit "对象可以以小写i开头
  @Experimental
  @InterfaceStability.Evolving
  object implicits extends SQLImplicits with Serializable {
    protected override def _sqlContext: SQLContext = SparkSession.this.sqlContext
  }
 
  //停止底层的“SparkContext”。
  def stop(): Unit = {
    sparkContext.stop()
  }

  //“stop()”的同义词
  override def close(): Unit = stop()

  //解析内部字符串表示中的数据类型。数据类型字符串的格式应与scala中的“toString”生成的格式相同,只有PysSpark才使用。
  protected[sql] def parseDataType(dataTypeString: String): DataType = {
    DataType.fromJson(dataTypeString)
  }

  //将schemaString定义的模式应用到RDD上。它只被PySpark使用。
  private[sql] def applySchemaToPythonRDD(
      rdd: RDD[Array[Any]],
      schemaString: String): DataFrame = {
    val schema = DataType.fromJson(schemaString).asInstanceOf[StructType]
    applySchemaToPythonRDD(rdd, schema)
  }

 //将该模式定义的模式应用到RDD上。它只被PySpark使用。
  private[sql] def applySchemaToPythonRDD(
      rdd: RDD[Array[Any]],
      schema: StructType): DataFrame = {
    val rowRdd = rdd.map(r => python.EvaluatePython.fromJava(r, schema).asInstanceOf[InternalRow])
    Dataset.ofRows(self, LogicalRDD(schema.toAttributes, rowRdd)(self))
  }

 //返回给定java bean类的Catalyst模式。
  private def getSchema(beanClass: Class[_]): Seq[AttributeReference] = {
    val (dataType, _) = JavaTypeInference.inferDataType(beanClass)
    dataType.asInstanceOf[StructType].fields.map { f =>
      AttributeReference(f.name, f.dataType, f.nullable)()
    }
  }

}


@InterfaceStability.Stable
object SparkSession {

  
  @InterfaceStability.Stable
  class Builder extends Logging {

    private[this] val options = new scala.collection.mutable.HashMap[String, String]

    private[this] val extensions = new SparkSessionExtensions

    private[this] var userSuppliedContext: Option[SparkContext] = None

    private[spark] def sparkContext(sparkContext: SparkContext): Builder = synchronized {
      userSuppliedContext = Option(sparkContext)
      this
    }

   //设置应用程序的名称,该名称将显示在Spark web UI中。
   //如果没有设置应用程序名称,将使用随机生成的名称。
    def appName(name: String): Builder = config("spark.app.name", name)

    def config(key: String, value: String): Builder = synchronized {
      options += key -> value
      this
    }

    def config(key: String, value: Long): Builder = synchronized {
      options += key -> value.toString
      this
    }

    def config(key: String, value: Double): Builder = synchronized {
      options += key -> value.toString
      this
    }

    def config(key: String, value: Boolean): Builder = synchronized {
      options += key -> value.toString
      this
    }

    def config(conf: SparkConf): Builder = synchronized {
      conf.getAll.foreach { case (k, v) => options += k -> v }
      this
    }

    def master(master: String): Builder = config("spark.master", master)

    //启用配置单元支持,包括连接到永久性配置单元元存储、支持配置单元序列和配置单元用户定义函数。
    def enableHiveSupport(): Builder = synchronized {
      if (hiveClassesArePresent) {
        config(CATALOG_IMPLEMENTATION.key, "hive")
      } else {
        throw new IllegalArgumentException(
          "Unable to instantiate SparkSession with Hive support because " +
            "Hive classes are not found.")
      }
    }
      
	//将扩展注入[[SparkSession]]。这允许用户添加分析器规则、优化器规则、规划策略或自定义解析器。
    def withExtensions(f: SparkSessionExtensions => Unit): Builder = {
      f(extensions)
      this
    }

    def getOrCreate(): SparkSession = synchronized {
      // Get the session from current thread's active session.
      var session = activeThreadSession.get()
      if ((session ne null) && !session.sparkContext.isStopped) {
        options.foreach { case (k, v) => session.sessionState.conf.setConfString(k, v) }
        if (options.nonEmpty) {
          logWarning("Using an existing SparkSession; some configuration may not take effect.")
        }
        return session
      }

      // 全局同步,因此我们将只设置默认会话一次。
      SparkSession.synchronized {
        // 如果当前线程没有活动会话,则从全局会话获取它。
        session = defaultSession.get()
        if ((session ne null) && !session.sparkContext.isStopped) {
          options.foreach { case (k, v) => session.sessionState.conf.setConfString(k, v) }
          if (options.nonEmpty) {
            logWarning("Using an existing SparkSession; some configuration may not take effect.")
          }
          return session
        }

        // 没有活跃或者全局会话,创建一个
        val sparkContext = userSuppliedContext.getOrElse {
          // 创建app name 如果没有
          val randomAppName = java.util.UUID.randomUUID().toString
          val sparkConf = new SparkConf()
          options.foreach { case (k, v) => sparkConf.set(k, v) }
          if (!sparkConf.contains("spark.app.name")) {
            sparkConf.setAppName(randomAppName)
          }
          val sc = SparkContext.getOrCreate(sparkConf)
          // 可能这是一个现有的SparkContext,更新它的SparkConf,它可能被SparkSession使用
          options.foreach { case (k, v) => sc.conf.set(k, v) }
          if (!sc.conf.contains("spark.app.name")) {
            sc.conf.setAppName(randomAppName)
          }
          sc
        }

        // 如果用户定义了配置器类,则初始化扩展。
        val extensionConfOption = sparkContext.conf.get(StaticSQLConf.SPARK_SESSION_EXTENSIONS)
        if (extensionConfOption.isDefined) {
          val extensionConfClassName = extensionConfOption.get
          try {
            val extensionConfClass = Utils.classForName(extensionConfClassName)
            val extensionConf = extensionConfClass.newInstance()
              .asInstanceOf[SparkSessionExtensions => Unit]
            extensionConf(extensions)
          } catch {
            // 如果找不到类或者类的类型错误,则忽略该错误。
            case e @ (_: ClassCastException |
                      _: ClassNotFoundException |
                      _: NoClassDefFoundError) =>
              logWarning(s"Cannot use $extensionConfClassName to configure session extensions.", e)
          }
        }

        session = new SparkSession(sparkContext, None, None, extensions)
        options.foreach { case (k, v) => session.sessionState.conf.setConfString(k, v) }
        defaultSession.set(session)

       
        sparkContext.addSparkListener(new SparkListener {
          override def onApplicationEnd(applicationEnd: SparkListenerApplicationEnd): Unit = {
            defaultSession.set(null)
            sqlListener.set(null)
          }
        })
      }

      return session
    }
  }

//创建一个[[SparkSession。用于构建一个[[SparkSession]]。
  def builder(): Builder = new Builder


  def setActiveSession(session: SparkSession): Unit = {
    activeThreadSession.set(session)
  }

  def clearActiveSession(): Unit = {
    activeThreadSession.remove()
  }

  def setDefaultSession(session: SparkSession): Unit = {
    defaultSession.set(session)
  }

  def clearDefaultSession(): Unit = {
    defaultSession.set(null)
  }

  def getActiveSession: Option[SparkSession] = Option(activeThreadSession.get)

  def getDefaultSession: Option[SparkSession] = Option(defaultSession.get)

  /** A global SQL listener used for the SQL UI. */
  private[sql] val sqlListener = new AtomicReference[SQLListener]()

  ////////////////////////////////////////////////////////////////////////////////////////
  // Private methods from now on
  ////////////////////////////////////////////////////////////////////////////////////////

  /** The active SparkSession for the current thread. */
  private val activeThreadSession = new InheritableThreadLocal[SparkSession]

  /** Reference to the root SparkSession. */
  private val defaultSession = new AtomicReference[SparkSession]

  private val HIVE_SESSION_STATE_BUILDER_CLASS_NAME =
    "org.apache.spark.sql.hive.HiveSessionStateBuilder"

  private def sessionStateClassName(conf: SparkConf): String = {
    conf.get(CATALOG_IMPLEMENTATION) match {
      case "hive" => HIVE_SESSION_STATE_BUILDER_CLASS_NAME
      case "in-memory" => classOf[SessionStateBuilder].getCanonicalName
    }
  }

  private def instantiateSessionState(
      className: String,
      sparkSession: SparkSession): SessionState = {
    try {
      // invoke `new [Hive]SessionStateBuilder(SparkSession, Option[SessionState])`
      val clazz = Utils.classForName(className)
      val ctor = clazz.getConstructors.head
      ctor.newInstance(sparkSession, None).asInstanceOf[BaseSessionStateBuilder].build()
    } catch {
      case NonFatal(e) =>
        throw new IllegalArgumentException(s"Error while instantiating '$className':", e)
    }
  }

  /**
   * @return true if Hive classes can be loaded, otherwise false.
   */
  private[spark] def hiveClassesArePresent: Boolean = {
    try {
      Utils.classForName(HIVE_SESSION_STATE_BUILDER_CLASS_NAME)
      Utils.classForName("org.apache.hadoop.hive.conf.HiveConf")
      true
    } catch {
      case _: ClassNotFoundException | _: NoClassDefFoundError => false
    }
  }

}

org.apache.kyuubi.KyuubiSQLException: Error operating ExecuteStatement: org.apache.spark.sql.AnalysisException: Reference 'customer_full_name' is ambiguous, could be: t1.customer_full_name, t2.customer_full_name.; line 46 pos 0 at org.apache.spark.sql.catalyst.expressions.package$AttributeSeq.resolve(package.scala:363) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveChildren(LogicalPlan.scala:105) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.$anonfun$resolveExpressionTopDown$1(Analyzer.scala:1485) at org.apache.spark.sql.catalyst.analysis.package$.withPosition(package.scala:53) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.innerResolve$1(Analyzer.scala:1487) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveReferences$$resolveExpressionTopDown(Analyzer.scala:1506) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$12.$anonfun$applyOrElse$98(Analyzer.scala:1683) at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$1(QueryPlan.scala:116) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:73) at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpression$1(QueryPlan.scala:116) at org.apache.spark.sql.catalyst.plans.QueryPlan.recursiveTransform$1(QueryPlan.scala:127) at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$3(QueryPlan.scala:132) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238) at scala.collection.immutable.List.foreach(List.scala:392) at scala.collection.TraversableLike.map(TraversableLike.scala:238) at scala.collection.TraversableLike.map$(TraversableLike.scala:231) at scala.collection.immutable.List.map(List.scala:298) at org.apache.spark.sql.catalyst.plans.QueryPlan.recursiveTransform$1(QueryPlan.scala:132) at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$4(QueryPlan.scala:137) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:243) at org.apache.spark.sql.catalyst.plans.QueryPlan.mapExpressions(QueryPlan.scala:137) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$12.applyOrElse(Analyzer.scala:1683) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$12.applyOrElse(Analyzer.scala:1509) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$5(AnalysisHelper.scala:94) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:73) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$1(AnalysisHelper.scala:94) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:221) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp(AnalysisHelper.scala:86) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp$(AnalysisHelper.scala:84) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$2(AnalysisHelper.scala:87) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$mapChildren$1(TreeNode.scala:407) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:243) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:405) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:358) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$1(AnalysisHelper.scala:87) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:221) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp(AnalysisHelper.scala:86) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp$(AnalysisHelper.scala:84) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$2(AnalysisHelper.scala:87) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$mapChildren$1(TreeNode.scala:415) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:243) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:405) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:358) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$1(AnalysisHelper.scala:87) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:221) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp(AnalysisHelper.scala:86) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp$(AnalysisHelper.scala:84) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:1509) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:1338) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$2(RuleExecutor.scala:216) at scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126) at scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122) at scala.collection.immutable.List.foldLeft(List.scala:89) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1(RuleExecutor.scala:213) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1$adapted(RuleExecutor.scala:205) at scala.collection.immutable.List.foreach(List.scala:392) at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:205) at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:196) at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:190) at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:155) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$executeAndTrack$1(RuleExecutor.scala:183) at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:88) at org.apache.spark.sql.catalyst.rules.RuleExecutor.executeAndTrack(RuleExecutor.scala:183) at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:174) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:228) at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:173) at org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:73) at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111) at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:143) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:143) at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:73) at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:71) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:63) at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:98) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:96) at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:615) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:610) at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.$anonfun$executeStatement$1(ExecuteStatement.scala:86) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.kyuubi.engine.spark.operation.SparkOperation.$anonfun$withLocalProperties$1(SparkOperation.scala:147) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.kyuubi.engine.spark.operation.SparkOperation.withLocalProperties(SparkOperation.scala:131) at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.executeStatement(ExecuteStatement.scala:81) at org.apache.kyuubi.engine.spark.operation.ExecuteStatement$$anon$1.run(ExecuteStatement.scala:103) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) at org.apache.kyuubi.KyuubiSQLException$.apply(KyuubiSQLException.scala:70) at org.apache.kyuubi.engine.spark.operation.SparkOperation$$anonfun$onError$1.$anonfun$applyOrElse$1(SparkOperation.scala:181) at org.apache.kyuubi.Utils$.withLockRequired(Utils.scala:425) at org.apache.kyuubi.operation.AbstractOperation.withLockRequired(AbstractOperation.scala:52) at org.apache.kyuubi.engine.spark.operation.SparkOperation$$anonfun$onError$1.applyOrElse(SparkOperation.scala:169) at org.apache.kyuubi.engine.spark.operation.SparkOperation$$anonfun$onError$1.applyOrElse(SparkOperation.scala:164) at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:38) at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.executeStatement(ExecuteStatement.scala:92) at org.apache.kyuubi.engine.spark.operation.ExecuteStatement$$anon$1.run(ExecuteStatement.scala:103) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.spark.sql.AnalysisException: Reference 'customer_full_name' is ambiguous, could be: t1.customer_full_name, t2.customer_full_name.; line 46 pos 0 at org.apache.spark.sql.catalyst.expressions.package$AttributeSeq.resolve(package.scala:363) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveChildren(LogicalPlan.scala:105) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.$anonfun$resolveExpressionTopDown$1(Analyzer.scala:1485) at org.apache.spark.sql.catalyst.analysis.package$.withPosition(package.scala:53) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.innerResolve$1(Analyzer.scala:1487) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveReferences$$resolveExpressionTopDown(Analyzer.scala:1506) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$12.$anonfun$applyOrElse$98(Analyzer.scala:1683) at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$1(QueryPlan.scala:116) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:73) at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpression$1(QueryPlan.scala:116) at org.apache.spark.sql.catalyst.plans.QueryPlan.recursiveTransform$1(QueryPlan.scala:127) at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$3(QueryPlan.scala:132) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238) at scala.collection.immutable.List.foreach(List.scala:392) at scala.collection.TraversableLike.map(TraversableLike.scala:238) at scala.collection.TraversableLike.map$(TraversableLike.scala:231) at scala.collection.immutable.List.map(List.scala:298) at org.apache.spark.sql.catalyst.plans.QueryPlan.recursiveTransform$1(QueryPlan.scala:132) at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$4(QueryPlan.scala:137) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:243) at org.apache.spark.sql.catalyst.plans.QueryPlan.mapExpressions(QueryPlan.scala:137) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$12.applyOrElse(Analyzer.scala:1683) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$12.applyOrElse(Analyzer.scala:1509) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$5(AnalysisHelper.scala:94) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:73) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$1(AnalysisHelper.scala:94) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:221) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp(AnalysisHelper.scala:86) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp$(AnalysisHelper.scala:84) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$2(AnalysisHelper.scala:87) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$mapChildren$1(TreeNode.scala:407) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:243) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:405) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:358) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$1(AnalysisHelper.scala:87) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:221) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp(AnalysisHelper.scala:86) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp$(AnalysisHelper.scala:84) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$2(AnalysisHelper.scala:87) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$mapChildren$1(TreeNode.scala:415) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:243) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:405) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:358) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$1(AnalysisHelper.scala:87) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:221) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp(AnalysisHelper.scala:86) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp$(AnalysisHelper.scala:84) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:1509) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:1338) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$2(RuleExecutor.scala:216) at scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126) at scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122) at scala.collection.immutable.List.foldLeft(List.scala:89) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1(RuleExecutor.scala:213) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1$adapted(RuleExecutor.scala:205) at scala.collection.immutable.List.foreach(List.scala:392) at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:205) at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:196) at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:190) at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:155) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$executeAndTrack$1(RuleExecutor.scala:183) at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:88) at org.apache.spark.sql.catalyst.rules.RuleExecutor.executeAndTrack(RuleExecutor.scala:183) at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:174) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:228) at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:173) at org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:73) at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111) at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:143) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:143) at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:73) at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:71) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:63) at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:98) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:96) at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:615) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:610) at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.$anonfun$executeStatement$1(ExecuteStatement.scala:86) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.kyuubi.engine.spark.operation.SparkOperation.$anonfun$withLocalProperties$1(SparkOperation.scala:147) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.kyuubi.engine.spark.operation.SparkOperation.withLocalProperties(SparkOperation.scala:131) at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.executeStatement(ExecuteStatement.scala:81) ... 6 more 执行的SQL语句: ```sql create table orca01_dr_data.ads_rpt_mini_loyalty_customer_t_1124 stored as parquet as with repurchase as( select t1.re_no, concat(t2.last_name,t2.first_name) as customer_full_name, t1.new_vin_17, t1.brand_name, t1.re_status, t1.create_date, CASE WHEN COUNT(DISTINCT vin_17) < COUNT(vin_17) THEN '是' ELSE '否' END AS is_vin_17_duplicate, CASE WHEN t1.category = '公司购车' THEN t1.company_name ELSE NULL END AS company_name_result from dwc.dwc_dim_com_membership2_bz_repurchase_full_t t1 left join dwc.dwc_dim_cus_membership2_customer_full_t t2 on t1.cop_id = t2.cop_id where t1.brand_name = 'MINI' and t1.create_date >= '2025-10-01' ), ordercenter as ( select paid_amount, vin.status as order_status ,vin.vin_17 as vin_17 ,concat(t4.last_name,t4.first_name) as concat_name ,t4.name as customer_full_name from dwc.dwc_fact_sal_ordercenter_core_order_full_t t1 left join dwc.dwc_fact_sal_ordercenter_payment_full_t a1 on t1.order_no = a1.order_no left join dwc.dwc_fact_sal_ordercenter_vehicle_fulfillment_full_t vin on t1.order_no=vin.order_no left join dwc.dwc_fact_sal_ordercenter_customer_full_t t4 on t1.order_no=t4.order_no and t1.cid=t4.cid and t4.type='VEHICLE_OWNER' and t4.deleted != 0 left join (select order_no,create_date,status,row_number() over(partition by order_no order by create_date asc nulls last ) as rk from dwc.dwc_fact_com_ordercenter_core_order_log_full_t where type = 'PAYMENT' ) log1 on t1.order_no=log1.order_no and log1.rk=1 where t1.business_type='NC' and t1.deleted != 0 ) select distinct t1.re_no, customer_full_name, t1.new_vin_17, t1.brand_name, t1.re_status, t1.create_date, is_vin_17_duplicate, company_name_result, paid_amount, order_status from repurchase t1 left join ordercenter t2 on t1.new_vin_17 = t2.vin_17为啥为啥
最新发布
11-26
Hive Session ID = 9cb9a1b7-4662-4f04-b8cd-406086f9b633 Exception in thread "main" org.apache.spark.sql.AnalysisException: org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:108) at org.apache.spark.sql.hive.HiveExternalCatalog.databaseExists(HiveExternalCatalog.scala:224) at org.apache.spark.sql.internal.SharedState.externalCatalog$lzycompute(SharedState.scala:146) at org.apache.spark.sql.internal.SharedState.externalCatalog(SharedState.scala:140) at org.apache.spark.sql.hive.HiveSessionStateBuilder.externalCatalog(HiveSessionStateBuilder.scala:54) at org.apache.spark.sql.hive.HiveSessionStateBuilder.$anonfun$catalog$1(HiveSessionStateBuilder.scala:69) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.externalCatalog$lzycompute(SessionCatalog.scala:123) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.externalCatalog(SessionCatalog.scala:123) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.listDatabases(SessionCatalog.scala:325) at org.apache.spark.sql.execution.datasources.v2.V2SessionCatalog.listNamespaces(V2SessionCatalog.scala:267) at org.apache.spark.sql.execution.datasources.v2.ShowNamespacesExec.run(ShowNamespacesExec.scala:42) at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result$lzycompute(V2CommandExec.scala:43) at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result(V2CommandExec.scala:43) at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.executeCollect(V2CommandExec.scala:49) at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:107) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:125) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:201) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:108) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:900) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:66) at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:107) at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:98) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:461) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(origin.scala:76) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:461) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:32) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:32) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:32) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:437) at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:98) at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:85) at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:83) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:220) at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:100) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:900) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:97) at org.apache.spark.sql.SparkSession.$anonfun$sql$4(SparkSession.scala:691) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:900) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:682) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:713) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:744) at DDL_hive.main(DDL_hive.java:29) Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient at org.apache.hadoop.hive.ql.metadata.Hive.getDatabase(Hive.java:1666) at org.apache.hadoop.hive.ql.metadata.Hive.databaseExists(Hive.java:1651) at org.apache.spark.sql.hive.client.Shim_v0_12.databaseExists(HiveShim.scala:609) at org.apache.spark.sql.hive.client.HiveClientImpl.$anonfun$databaseExists$1(HiveClientImpl.scala:407) at scala.runtime.java8.JFunction0$mcZ$sp.apply(JFunction0$mcZ$sp.java:23) at org.apache.spark.sql.hive.client.HiveClientImpl.$anonfun$withHiveState$1(HiveClientImpl.scala:304) at org.apache.spark.sql.hive.client.HiveClientImpl.liftedTree1$1(HiveClientImpl.scala:235) at org.apache.spark.sql.hive.client.HiveClientImpl.retryLocked(HiveClientImpl.scala:234) at org.apache.spark.sql.hive.client.HiveClientImpl.withHiveState(HiveClientImpl.scala:284) at org.apache.spark.sql.hive.client.HiveClientImpl.databaseExists(HiveClientImpl.scala:407) at org.apache.spark.sql.hive.HiveExternalCatalog.$anonfun$databaseExists$1(HiveExternalCatalog.scala:224) at scala.runtime.java8.JFunction0$mcZ$sp.apply(JFunction0$mcZ$sp.java:23) at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:99) ... 43 more Caused by: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient at org.apache.hadoop.hive.metastore.utils.JavaUtils.newInstance(JavaUtils.java:86) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.<init>(RetryingMetaStoreClient.java:95) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:148) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:119) at org.apache.hadoop.hive.ql.metadata.Hive.createMetaStoreClient(Hive.java:4306) at org.apache.hadoop.hive.ql.metadata.Hive.getMSC(Hive.java:4374) at org.apache.hadoop.hive.ql.metadata.Hive.getMSC(Hive.java:4354) at org.apache.hadoop.hive.ql.metadata.Hive.getDatabase(Hive.java:1662) ... 55 more Caused by: java.lang.reflect.InvocationTargetException at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.hadoop.hive.metastore.utils.JavaUtils.newInstance(JavaUtils.java:84) ... 62 more Caused by: MetaException(message:Could not connect to meta store using any of the URIs provided. Most recent failure: org.apache.thrift.transport.TTransportException: java.net.ConnectException: Connection refused: connect at org.apache.thrift.transport.TSocket.open(TSocket.java:226) at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.open(HiveMetaStoreClient.java:516) at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.<init>(HiveMetaStoreClient.java:224) at org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.<init>(SessionHiveMetaStoreClient.java:94) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.hadoop.hive.metastore.utils.JavaUtils.newInstance(JavaUtils.java:84) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.<init>(RetryingMetaStoreClient.java:95) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:148) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:119) at org.apache.hadoop.hive.ql.metadata.Hive.createMetaStoreClient(Hive.java:4306) at org.apache.hadoop.hive.ql.metadata.Hive.getMSC(Hive.java:4374) at org.apache.hadoop.hive.ql.metadata.Hive.getMSC(Hive.java:4354) at org.apache.hadoop.hive.ql.metadata.Hive.getDatabase(Hive.java:1662) at org.apache.hadoop.hive.ql.metadata.Hive.databaseExists(Hive.java:1651) at org.apache.spark.sql.hive.client.Shim_v0_12.databaseExists(HiveShim.scala:609) at org.apache.spark.sql.hive.client.HiveClientImpl.$anonfun$databaseExists$1(HiveClientImpl.scala:407) at scala.runtime.java8.JFunction0$mcZ$sp.apply(JFunction0$mcZ$sp.java:23) at org.apache.spark.sql.hive.client.HiveClientImpl.$anonfun$withHiveState$1(HiveClientImpl.scala:304) at org.apache.spark.sql.hive.client.HiveClientImpl.liftedTree1$1(HiveClientImpl.scala:235) at org.apache.spark.sql.hive.client.HiveClientImpl.retryLocked(HiveClientImpl.scala:234) at org.apache.spark.sql.hive.client.HiveClientImpl.withHiveState(HiveClientImpl.scala:284) at org.apache.spark.sql.hive.client.HiveClientImpl.databaseExists(HiveClientImpl.scala:407) at org.apache.spark.sql.hive.HiveExternalCatalog.$anonfun$databaseExists$1(HiveExternalCatalog.scala:224) at scala.runtime.java8.JFunction0$mcZ$sp.apply(JFunction0$mcZ$sp.java:23) at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:99) at org.apache.spark.sql.hive.HiveExternalCatalog.databaseExists(HiveExternalCatalog.scala:224) at org.apache.spark.sql.internal.SharedState.externalCatalog$lzycompute(SharedState.scala:146) at org.apache.spark.sql.internal.SharedState.externalCatalog(SharedState.scala:140) at org.apache.spark.sql.hive.HiveSessionStateBuilder.externalCatalog(HiveSessionStateBuilder.scala:54) at org.apache.spark.sql.hive.HiveSessionStateBuilder.$anonfun$catalog$1(HiveSessionStateBuilder.scala:69) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.externalCatalog$lzycompute(SessionCatalog.scala:123) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.externalCatalog(SessionCatalog.scala:123) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.listDatabases(SessionCatalog.scala:325) at org.apache.spark.sql.execution.datasources.v2.V2SessionCatalog.listNamespaces(V2SessionCatalog.scala:267) at org.apache.spark.sql.execution.datasources.v2.ShowNamespacesExec.run(ShowNamespacesExec.scala:42) at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result$lzycompute(V2CommandExec.scala:43) at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result(V2CommandExec.scala:43) at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.executeCollect(V2CommandExec.scala:49) at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:107) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:125) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:201) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:108) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:900) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:66) at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:107) at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:98) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:461) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(origin.scala:76) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:461) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:32) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:32) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:32) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:437) at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:98) at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:85) at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:83) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:220) at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:100) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:900) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:97) at org.apache.spark.sql.SparkSession.$anonfun$sql$4(SparkSession.scala:691) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:900) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:682) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:713) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:744) at DDL_hive.main(DDL_hive.java:29) Caused by: java.net.ConnectException: Connection refused: connect at java.net.DualStackPlainSocketImpl.waitForConnect(Native Method) at java.net.DualStackPlainSocketImpl.socketConnect(DualStackPlainSocketImpl.java:85) at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350) at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206) at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188) at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:172) at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392) at java.net.Socket.connect(Socket.java:589) at org.apache.thrift.transport.TSocket.open(TSocket.java:221) ... 70 more ) at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.open(HiveMetaStoreClient.java:565) at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.<init>(HiveMetaStoreClient.java:224) at org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.<init>(SessionHiveMetaStoreClient.java:94) ... 67 more 11:05:58.838 [shutdown-hook-0] ERROR org.apache.spark.util.ShutdownHookManager - Exception while deleting Spark temp dir: C:\Users\liguanghui\AppData\Local\Temp\hive-v3_1-464320dd-c24a-44ba-a840-87e23193a43a java.io.IOException: Failed to delete: C:\Users\liguanghui\AppData\Local\Temp\hive-v3_1-464320dd-c24a-44ba-a840-87e23193a43a\stax_stax-api-1.0.1.jar at org.apache.spark.network.util.JavaUtils.deleteRecursivelyUsingJavaIO(JavaUtils.java:147) ~[spark-common-utils_2.12-3.5.6.jar:3.5.6] at org.apache.spark.network.util.JavaUtils.deleteRecursively(JavaUtils.java:117) ~[spark-common-utils_2.12-3.5.6.jar:3.5.6] at org.apache.spark.network.util.JavaUtils.deleteRecursivelyUsingJavaIO(JavaUtils.java:130) ~[spark-common-utils_2.12-3.5.6.jar:3.5.6] at org.apache.spark.network.util.JavaUtils.deleteRecursively(JavaUtils.java:117) ~[spark-common-utils_2.12-3.5.6.jar:3.5.6] at org.apache.spark.network.util.JavaUtils.deleteRecursively(JavaUtils.java:90) ~[spark-common-utils_2.12-3.5.6.jar:3.5.6] at org.apache.spark.util.SparkFileUtils.deleteRecursively(SparkFileUtils.scala:121) ~[spark-common-utils_2.12-3.5.6.jar:3.5.6] at org.apache.spark.util.SparkFileUtils.deleteRecursively$(SparkFileUtils.scala:120) ~[spark-common-utils_2.12-3.5.6.jar:3.5.6] at org.apache.spark.util.Utils$.deleteRecursively(Utils.scala:1126) ~[spark-core_2.12-3.5.6.jar:3.5.6] at org.apache.spark.util.ShutdownHookManager$.$anonfun$new$4(ShutdownHookManager.scala:65) ~[spark-core_2.12-3.5.6.jar:3.5.6] at org.apache.spark.util.ShutdownHookManager$.$anonfun$new$4$adapted(ShutdownHookManager.scala:62) ~[spark-core_2.12-3.5.6.jar:3.5.6] at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:36) ~[scala-library-2.12.18.jar:?] at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:33) ~[scala-library-2.12.18.jar:?] at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:198) ~[scala-library-2.12.18.jar:?] at org.apache.spark.util.ShutdownHookManager$.$anonfun$new$2(ShutdownHookManager.scala:62) ~[spark-core_2.12-3.5.6.jar:3.5.6] at org.apache.spark.util.SparkShutdownHook.run(ShutdownHookManager.scala:214) ~[spark-core_2.12-3.5.6.jar:3.5.6] at org.apache.spark.util.SparkShutdownHookManager.$anonfun$runAll$2(ShutdownHookManager.scala:188) ~[spark-core_2.12-3.5.6.jar:3.5.6] at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) ~[scala-library-2.12.18.jar:?] at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1928) ~[spark-core_2.12-3.5.6.jar:3.5.6] at org.apache.spark.util.SparkShutdownHookManager.$anonfun$runAll$1(ShutdownHookManager.scala:188) ~[spark-core_2.12-3.5.6.jar:3.5.6] at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) [scala-library-2.12.18.jar:?] at scala.util.Try$.apply(Try.scala:213) [scala-library-2.12.18.jar:?] at org.apache.spark.util.SparkShutdownHookManager.runAll(ShutdownHookManager.scala:188) [spark-core_2.12-3.5.6.jar:3.5.6] at org.apache.spark.util.SparkShutdownHookManager$$anon$2.run(ShutdownHookManager.scala:178) [spark-core_2.12-3.5.6.jar:3.5.6] at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) [?:1.8.0_151] at java.util.concurrent.FutureTask.run(FutureTask.java:266) [?:1.8.0_151] at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_151] at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_151] at java.lang.Thread.run(Thread.java:748) [?:1.8.0_151]
11-10
NestedThrowablesStackTrace: java.lang.reflect.InvocationTargetException at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.datanucleus.plugin.NonManagedPluginRegistry.createExecutableExtension(NonManagedPluginRegistry.java:631) at org.datanucleus.plugin.PluginManager.createExecutableExtension(PluginManager.java:325) at org.datanucleus.store.AbstractStoreManager.registerConnectionFactory(AbstractStoreManager.java:282) at org.datanucleus.store.AbstractStoreManager.<init>(AbstractStoreManager.java:240) at org.datanucleus.store.rdbms.RDBMSStoreManager.<init>(RDBMSStoreManager.java:286) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.datanucleus.plugin.NonManagedPluginRegistry.createExecutableExtension(NonManagedPluginRegistry.java:631) at org.datanucleus.plugin.PluginManager.createExecutableExtension(PluginManager.java:301) at org.datanucleus.NucleusContext.createStoreManagerForProperties(NucleusContext.java:1187) at org.datanucleus.NucleusContext.initialise(NucleusContext.java:356) at org.datanucleus.api.jdo.JDOPersistenceManagerFactory.freezeConfiguration(JDOPersistenceManagerFactory.java:775) at org.datanucleus.api.jdo.JDOPersistenceManagerFactory.createPersistenceManagerFactory(JDOPersistenceManagerFactory.java:333) at org.datanucleus.api.jdo.JDOPersistenceManagerFactory.getPersistenceManagerFactory(JDOPersistenceManagerFactory.java:202) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at javax.jdo.JDOHelper$16.run(JDOHelper.java:1965) at java.security.AccessController.doPrivileged(Native Method) at javax.jdo.JDOHelper.invoke(JDOHelper.java:1960) at javax.jdo.JDOHelper.invokeGetPersistenceManagerFactoryOnImplementation(JDOHelper.java:1166) at javax.jdo.JDOHelper.getPersistenceManagerFactory(JDOHelper.java:808) at javax.jdo.JDOHelper.getPersistenceManagerFactory(JDOHelper.java:701) at org.apache.hadoop.hive.metastore.ObjectStore.getPMF(ObjectStore.java:365) at org.apache.hadoop.hive.metastore.ObjectStore.getPersistenceManager(ObjectStore.java:394) at org.apache.hadoop.hive.metastore.ObjectStore.initialize(ObjectStore.java:291) at org.apache.hadoop.hive.metastore.ObjectStore.setConf(ObjectStore.java:258) at org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:76) at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:136) at org.apache.hadoop.hive.metastore.RawStoreProxy.<init>(RawStoreProxy.java:57) at org.apache.hadoop.hive.metastore.RawStoreProxy.getProxy(RawStoreProxy.java:66) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.newRawStore(HiveMetaStore.java:593) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.getMS(HiveMetaStore.java:571) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.createDefaultDB(HiveMetaStore.java:620) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.init(HiveMetaStore.java:461) at org.apache.hadoop.hive.metastore.RetryingHMSHandler.<init>(RetryingHMSHandler.java:66) at org.apache.hadoop.hive.metastore.RetryingHMSHandler.getProxy(RetryingHMSHandler.java:72) at org.apache.hadoop.hive.metastore.HiveMetaStore.newRetryingHMSHandler(HiveMetaStore.java:5762) at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.<init>(HiveMetaStoreClient.java:199) at org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.<init>(SessionHiveMetaStoreClient.java:74) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1521) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.<init>(RetryingMetaStoreClient.java:86) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:132) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:104) at org.apache.hadoop.hive.ql.metadata.Hive.createMetaStoreClient(Hive.java:3005) at org.apache.hadoop.hive.ql.metadata.Hive.getMSC(Hive.java:3024) at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:503) at org.apache.spark.sql.hive.client.HiveClientImpl.<init>(HiveClientImpl.scala:192) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:264) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:366) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:270) at org.apache.spark.sql.hive.HiveExternalCatalog.<init>(HiveExternalCatalog.scala:65) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.spark.sql.internal.SharedState$.org$apache$spark$sql$internal$SharedState$$reflect(SharedState.scala:166) at org.apache.spark.sql.internal.SharedState.<init>(SharedState.scala:86) at org.apache.spark.sql.SparkSession$$anonfun$sharedState$1.apply(SparkSession.scala:101) at org.apache.spark.sql.SparkSession$$anonfun$sharedState$1.apply(SparkSession.scala:101) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.sql.SparkSession.sharedState$lzycompute(SparkSession.scala:101) at org.apache.spark.sql.SparkSession.sharedState(SparkSession.scala:100) at org.apache.spark.sql.internal.SessionState.<init>(SessionState.scala:157) at org.apache.spark.sql.hive.HiveSessionState.<init>(HiveSessionState.scala:32) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.spark.sql.SparkSession$.org$apache$spark$sql$SparkSession$$reflect(SparkSession.scala:978) at org.apache.spark.sql.SparkSession.sessionState$lzycompute(SparkSession.scala:110) at org.apache.spark.sql.SparkSession.sessionState(SparkSession.scala:109) at org.apache.spark.sql.SparkSession$Builder$$anonfun$getOrCreate$5.apply(SparkSession.scala:878) at org.apache.spark.sql.SparkSession$Builder$$anonfun$getOrCreate$5.apply(SparkSession.scala:878) at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:99) at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:99) at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:230) at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40) at scala.collection.mutable.HashMap.foreach(HashMap.scala:99) at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:878) at $line13.$read$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:18) at $line13.$read$$iw$$iw$$iw$$iw$$iw.<init>(<console>:23) at $line13.$read$$iw$$iw$$iw$$iw.<init>(<console>:25) at $line13.$read$$iw$$iw$$iw.<init>(<console>:27) at $line13.$read$$iw$$iw.<init>(<console>:29) at $line13.$read$$iw.<init>(<console>:31) at $line13.$read.<init>(<console>:33) at $line13.$read$.<init>(<console>:37) at $line13.$read$.<clinit>(<console>) at $line13.$eval$.$print$lzycompute(<console>:7) at $line13.$eval$.$print(<console>:6) at $line13.$eval.$print(<console>) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786) at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047) at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638) at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637) at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31) at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19) at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637) at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569) at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565) at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807) at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681) at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395) at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:415) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:923) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909) at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97) at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909) at org.apache.spark.repl.Main$.doMain(Main.scala:68) at org.apache.spark.repl.Main$.main(Main.scala:51) at org.apache.spark.repl.Main.main(Main.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Caused by: java.lang.NoClassDefFoundError: Could not initialize class org.apache.derby.jdbc.EmbeddedDriver at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at java.lang.Class.newInstance(Class.java:442) at org.datanucleus.store.rdbms.connectionpool.AbstractConnectionPoolFactory.loadDriver(AbstractConnectionPoolFactory.java:47) at org.datanucleus.store.rdbms.connectionpool.BoneCPConnectionPoolFactory.createConnectionPool(BoneCPConnectionPoolFactory.java:54) at org.datanucleus.store.rdbms.ConnectionFactoryImpl.generateDataSources(ConnectionFactoryImpl.java:238) at org.datanucleus.store.rdbms.ConnectionFactoryImpl.initialiseDataSources(ConnectionFactoryImpl.java:131) at org.datanucleus.store.rdbms.ConnectionFactoryImpl.<init>(ConnectionFactoryImpl.java:85) ... 141 more java.lang.IllegalArgumentException: Error while instantiating 'org.apache.spark.sql.hive.HiveSessionState': at org.apache.spark.sql.SparkSession$.org$apache$spark$sql$SparkSession$$reflect(SparkSession.scala:981) at org.apache.spark.sql.SparkSession.sessionState$lzycompute(SparkSession.scala:110) at org.apache.spark.sql.SparkSession.sessionState(SparkSession.scala:109) at org.apache.spark.sql.SparkSession$Builder$$anonfun$getOrCreate$5.apply(SparkSession.scala:878) at org.apache.spark.sql.SparkSession$Builder$$anonfun$getOrCreate$5.apply(SparkSession.scala:878) at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:99) at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:99) at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:230) at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40) at scala.collection.mutable.HashMap.foreach(HashMap.scala:99) at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:878) ... 46 elided Caused by: java.lang.reflect.InvocationTargetException: java.lang.IllegalArgumentException: Error while instantiating 'org.apache.spark.sql.hive.HiveExternalCatalog': at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.spark.sql.SparkSession$.org$apache$spark$sql$SparkSession$$reflect(SparkSession.scala:978) ... 56 more Caused by: java.lang.IllegalArgumentException: Error while instantiating 'org.apache.spark.sql.hive.HiveExternalCatalog': at org.apache.spark.sql.internal.SharedState$.org$apache$spark$sql$internal$SharedState$$reflect(SharedState.scala:169) at org.apache.spark.sql.internal.SharedState.<init>(SharedState.scala:86) at org.apache.spark.sql.SparkSession$$anonfun$sharedState$1.apply(SparkSession.scala:101) at org.apache.spark.sql.SparkSession$$anonfun$sharedState$1.apply(SparkSession.scala:101) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.sql.SparkSession.sharedState$lzycompute(SparkSession.scala:101) at org.apache.spark.sql.SparkSession.sharedState(SparkSession.scala:100) at org.apache.spark.sql.internal.SessionState.<init>(SessionState.scala:157) at org.apache.spark.sql.hive.HiveSessionState.<init>(HiveSessionState.scala:32) ... 61 more Caused by: java.lang.reflect.InvocationTargetException: java.lang.reflect.InvocationTargetException: java.lang.RuntimeException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.spark.sql.internal.SharedState$.org$apache$spark$sql$internal$SharedState$$reflect(SharedState.scala:166) ... 69 more Caused by: java.lang.reflect.InvocationTargetException: java.lang.RuntimeException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:264) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:366) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:270) at org.apache.spark.sql.hive.HiveExternalCatalog.<init>(HiveExternalCatalog.scala:65) ... 74 more Caused by: java.lang.RuntimeException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:522) at org.apache.spark.sql.hive.client.HiveClientImpl.<init>(HiveClientImpl.scala:192) ... 82 more Caused by: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient at org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1523) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.<init>(RetryingMetaStoreClient.java:86) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:132) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:104) at org.apache.hadoop.hive.ql.metadata.Hive.createMetaStoreClient(Hive.java:3005) at org.apache.hadoop.hive.ql.metadata.Hive.getMSC(Hive.java:3024) at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:503) ... 83 more Caused by: java.lang.reflect.InvocationTargetException: javax.jdo.JDOFatalInternalException: Error creating transactional connection factory at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1521) ... 89 more Caused by: javax.jdo.JDOFatalInternalException: Error creating transactional connection factory at org.datanucleus.api.jdo.NucleusJDOHelper.getJDOExceptionForNucleusException(NucleusJDOHelper.java:587) at org.datanucleus.api.jdo.JDOPersistenceManagerFactory.freezeConfiguration(JDOPersistenceManagerFactory.java:788) at org.datanucleus.api.jdo.JDOPersistenceManagerFactory.createPersistenceManagerFactory(JDOPersistenceManagerFactory.java:333) at org.datanucleus.api.jdo.JDOPersistenceManagerFactory.getPersistenceManagerFactory(JDOPersistenceManagerFactory.java:202) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at javax.jdo.JDOHelper$16.run(JDOHelper.java:1965) at java.security.AccessController.doPrivileged(Native Method) at javax.jdo.JDOHelper.invoke(JDOHelper.java:1960) at javax.jdo.JDOHelper.invokeGetPersistenceManagerFactoryOnImplementation(JDOHelper.java:1166) at javax.jdo.JDOHelper.getPersistenceManagerFactory(JDOHelper.java:808) at javax.jdo.JDOHelper.getPersistenceManagerFactory(JDOHelper.java:701) at org.apache.hadoop.hive.metastore.ObjectStore.getPMF(ObjectStore.java:365) at org.apache.hadoop.hive.metastore.ObjectStore.getPersistenceManager(ObjectStore.java:394) at org.apache.hadoop.hive.metastore.ObjectStore.initialize(ObjectStore.java:291) at org.apache.hadoop.hive.metastore.ObjectStore.setConf(ObjectStore.java:258) at org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:76) at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:136) at org.apache.hadoop.hive.metastore.RawStoreProxy.<init>(RawStoreProxy.java:57) at org.apache.hadoop.hive.metastore.RawStoreProxy.getProxy(RawStoreProxy.java:66) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.newRawStore(HiveMetaStore.java:593) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.getMS(HiveMetaStore.java:571) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.createDefaultDB(HiveMetaStore.java:624) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.init(HiveMetaStore.java:461) at org.apache.hadoop.hive.metastore.RetryingHMSHandler.<init>(RetryingHMSHandler.java:66) at org.apache.hadoop.hive.metastore.RetryingHMSHandler.getProxy(RetryingHMSHandler.java:72) at org.apache.hadoop.hive.metastore.HiveMetaStore.newRetryingHMSHandler(HiveMetaStore.java:5762) at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.<init>(HiveMetaStoreClient.java:199) at org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.<init>(SessionHiveMetaStoreClient.java:74) ... 94 more Caused by: java.lang.reflect.InvocationTargetException: java.lang.NoClassDefFoundError: Could not initialize class org.apache.derby.jdbc.EmbeddedDriver at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.datanucleus.plugin.NonManagedPluginRegistry.createExecutableExtension(NonManagedPluginRegistry.java:631) at org.datanucleus.plugin.PluginManager.createExecutableExtension(PluginManager.java:325) at org.datanucleus.store.AbstractStoreManager.registerConnectionFactory(AbstractStoreManager.java:282) at org.datanucleus.store.AbstractStoreManager.<init>(AbstractStoreManager.java:240) at org.datanucleus.store.rdbms.RDBMSStoreManager.<init>(RDBMSStoreManager.java:286) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.datanucleus.plugin.NonManagedPluginRegistry.createExecutableExtension(NonManagedPluginRegistry.java:631) at org.datanucleus.plugin.PluginManager.createExecutableExtension(PluginManager.java:301) at org.datanucleus.NucleusContext.createStoreManagerForProperties(NucleusContext.java:1187) at org.datanucleus.NucleusContext.initialise(NucleusContext.java:356) at org.datanucleus.api.jdo.JDOPersistenceManagerFactory.freezeConfiguration(JDOPersistenceManagerFactory.java:775) ... 123 more Caused by: java.lang.NoClassDefFoundError: Could not initialize class org.apache.derby.jdbc.EmbeddedDriver at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at java.lang.Class.newInstance(Class.java:442) at org.datanucleus.store.rdbms.connectionpool.AbstractConnectionPoolFactory.loadDriver(AbstractConnectionPoolFactory.java:47) at org.datanucleus.store.rdbms.connectionpool.BoneCPConnectionPoolFactory.createConnectionPool(BoneCPConnectionPoolFactory.java:54) at org.datanucleus.store.rdbms.ConnectionFactoryImpl.generateDataSources(ConnectionFactoryImpl.java:238) at org.datanucleus.store.rdbms.ConnectionFactoryImpl.initialiseDataSources(ConnectionFactoryImpl.java:131) at org.datanucleus.store.rdbms.ConnectionFactoryImpl.<init>
06-14
org.apache.kyuubi.KyuubiSQLException: Error operating ExecuteStatement: org.apache.spark.SparkException: Job aborted. at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:231) at org.apache.spark.sql.hive.execution.SaveAsHiveFile.saveAsHiveFile(SaveAsHiveFile.scala:97) at org.apache.spark.sql.hive.execution.SaveAsHiveFile.saveAsHiveFile$(SaveAsHiveFile.scala:48) at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.saveAsHiveFile(InsertIntoHiveTable.scala:71) at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.processInsert(InsertIntoHiveTable.scala:212) at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.run(InsertIntoHiveTable.scala:104) at org.apache.spark.sql.hive.execution.CreateHiveTableAsSelectBase.run(CreateHiveTableAsSelectCommand.scala:71) at org.apache.spark.sql.hive.execution.CreateHiveTableAsSelectBase.run$(CreateHiveTableAsSelectCommand.scala:40) at org.apache.spark.sql.hive.execution.CreateHiveTableAsSelectCommand.run(CreateHiveTableAsSelectCommand.scala:107) at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:108) at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:106) at org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:120) at org.apache.spark.sql.Dataset.$anonfun$logicalPlan$1(Dataset.scala:228) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3743) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3741) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:228) at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:99) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:96) at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:615) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:610) at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.$anonfun$executeStatement$1(ExecuteStatement.scala:86) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.kyuubi.engine.spark.operation.SparkOperation.$anonfun$withLocalProperties$1(SparkOperation.scala:147) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.kyuubi.engine.spark.operation.SparkOperation.withLocalProperties(SparkOperation.scala:131) at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.executeStatement(ExecuteStatement.scala:81) at org.apache.kyuubi.engine.spark.operation.ExecuteStatement$$anon$1.run(ExecuteStatement.scala:103) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: ShuffleMapStage 19 (sql at ExecuteStatement.scala:86) has failed the maximum allowable number of times: 4. Most recent failure reason: org.apache.spark.shuffle.FetchFailedException: Failed to connect to emr-worker-18835.cluster-322843/10.85.56.174:7337 at org.apache.spark.storage.ShuffleBlockFetcherIterator.throwFetchFailedException(ShuffleBlockFetcherIterator.scala:770) at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:685) at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:70) at org.apache.spark.util.CompletionIterator.next(CompletionIterator.scala:29) at scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:484) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:490) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458) at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:31) at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458) at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:225) at org.apache.spark.sql.execution.SortExec.$anonfun$doExecute$1(SortExec.scala:119) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:898) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:898) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373) at org.apache.spark.rdd.RDD.iterator(RDD.scala:337) at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373) at org.apache.spark.rdd.RDD.iterator(RDD.scala:337) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373) at org.apache.spark.rdd.RDD.iterator(RDD.scala:337) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373) at org.apache.spark.rdd.RDD.iterator(RDD.scala:337) at org.apache.spark.shuffle.ShuffleWriteProcessor.write(ShuffleWriteProcessor.scala:59) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:52) at org.apache.spark.scheduler.Task.run(Task.scala:131) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:497) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:500) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Caused by: java.io.IOException: Failed to connect to emr-worker-18835.cluster-322843/10.85.56.174:7337 at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:287) at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:218) at org.apache.spark.network.shuffle.ExternalBlockStoreClient.lambda$fetchBlocks$0(ExternalBlockStoreClient.java:101) at org.apache.spark.network.shuffle.RetryingBlockFetcher.fetchAllOutstanding(RetryingBlockFetcher.java:153) at org.apache.spark.network.shuffle.RetryingBlockFetcher.lambda$initiateRetry$0(RetryingBlockFetcher.java:181) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30) ... 1 more Caused by: io.netty.channel.AbstractChannel$AnnotatedConnectException: Connection refused: emr-worker-18835.cluster-322843/10.85.56.174:7337 Caused by: java.net.ConnectException: Connection refused at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method) at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:714) at io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel.java:330) at io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnect(AbstractNioChannel.java:334) at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:702) at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:650) at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:576) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:493) at io.netty.util.concurrent.SingleThreadEventExecutor$4.run(SingleThreadEventExecutor.java:989) at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74) at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30) at java.lang.Thread.run(Thread.java:748) at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2253) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2202) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2201) at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2201) at org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:1763) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2437) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2382) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2371) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) at org.apache.kyuubi.KyuubiSQLException$.apply(KyuubiSQLException.scala:70) at org.apache.kyuubi.engine.spark.operation.SparkOperation$$anonfun$onError$1.$anonfun$applyOrElse$1(SparkOperation.scala:181) at org.apache.kyuubi.Utils$.withLockRequired(Utils.scala:425) at org.apache.kyuubi.operation.AbstractOperation.withLockRequired(AbstractOperation.scala:52) at org.apache.kyuubi.engine.spark.operation.SparkOperation$$anonfun$onError$1.applyOrElse(SparkOperation.scala:169) at org.apache.kyuubi.engine.spark.operation.SparkOperation$$anonfun$onError$1.applyOrElse(SparkOperation.scala:164) at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:38) at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.executeStatement(ExecuteStatement.scala:92) at org.apache.kyuubi.engine.spark.operation.ExecuteStatement$$anon$1.run(ExecuteStatement.scala:103) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.spark.SparkException: Job aborted. at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:231) at org.apache.spark.sql.hive.execution.SaveAsHiveFile.saveAsHiveFile(SaveAsHiveFile.scala:97) at org.apache.spark.sql.hive.execution.SaveAsHiveFile.saveAsHiveFile$(SaveAsHiveFile.scala:48) at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.saveAsHiveFile(InsertIntoHiveTable.scala:71) at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.processInsert(InsertIntoHiveTable.scala:212) at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.run(InsertIntoHiveTable.scala:104) at org.apache.spark.sql.hive.execution.CreateHiveTableAsSelectBase.run(CreateHiveTableAsSelectCommand.scala:71) at org.apache.spark.sql.hive.execution.CreateHiveTableAsSelectBase.run$(CreateHiveTableAsSelectCommand.scala:40) at org.apache.spark.sql.hive.execution.CreateHiveTableAsSelectCommand.run(CreateHiveTableAsSelectCommand.scala:107) at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:108) at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:106) at org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:120) at org.apache.spark.sql.Dataset.$anonfun$logicalPlan$1(Dataset.scala:228) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3743) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3741) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:228) at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:99) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:96) at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:615) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:610) at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.$anonfun$executeStatement$1(ExecuteStatement.scala:86) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.kyuubi.engine.spark.operation.SparkOperation.$anonfun$withLocalProperties$1(SparkOperation.scala:147) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.kyuubi.engine.spark.operation.SparkOperation.withLocalProperties(SparkOperation.scala:131) at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.executeStatement(ExecuteStatement.scala:81) ... 6 more Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: ShuffleMapStage 19 (sql at ExecuteStatement.scala:86) has failed the maximum allowable number of times: 4. Most recent failure reason: org.apache.spark.shuffle.FetchFailedException: Failed to connect to emr-worker-18835.cluster-322843/10.85.56.174:7337 at org.apache.spark.storage.ShuffleBlockFetcherIterator.throwFetchFailedException(ShuffleBlockFetcherIterator.scala:770) at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:685) at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:70) at org.apache.spark.util.CompletionIterator.next(CompletionIterator.scala:29) at scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:484) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:490) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458) at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:31) at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458) at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:225) at org.apache.spark.sql.execution.SortExec.$anonfun$doExecute$1(SortExec.scala:119) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:898) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:898) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373) at org.apache.spark.rdd.RDD.iterator(RDD.scala:337) at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373) at org.apache.spark.rdd.RDD.iterator(RDD.scala:337) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373) at org.apache.spark.rdd.RDD.iterator(RDD.scala:337) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373) at org.apache.spark.rdd.RDD.iterator(RDD.scala:337) at org.apache.spark.shuffle.ShuffleWriteProcessor.write(ShuffleWriteProcessor.scala:59) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:52) at org.apache.spark.scheduler.Task.run(Task.scala:131) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:497) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:500) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Caused by: java.io.IOException: Failed to connect to emr-worker-18835.cluster-322843/10.85.56.174:7337 at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:287) at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:218) at org.apache.spark.network.shuffle.ExternalBlockStoreClient.lambda$fetchBlocks$0(ExternalBlockStoreClient.java:101) at org.apache.spark.network.shuffle.RetryingBlockFetcher.fetchAllOutstanding(RetryingBlockFetcher.java:153) at org.apache.spark.network.shuffle.RetryingBlockFetcher.lambda$initiateRetry$0(RetryingBlockFetcher.java:181) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30) ... 1 more Caused by: io.netty.channel.AbstractChannel$AnnotatedConnectException: Connection refused: emr-worker-18835.cluster-322843/10.85.56.174:7337 Caused by: java.net.ConnectException: Connection refused at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method) at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:714) at io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel.java:330) at io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnect(AbstractNioChannel.java:334) at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:702) at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:650) at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:576) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:493) at io.netty.util.concurrent.SingleThreadEventExecutor$4.run(SingleThreadEventExecutor.java:989) at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74) at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30) at java.lang.Thread.run(Thread.java:748) at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2253) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2202) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2201) at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2201) at org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:1763) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2437) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2382) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2371) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)这啥问题
11-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值