pthread_cond_wait与pthread_cond_signal

本文深入探讨了多线程编程中的条件变量机制,详细解释了条件变量的创建、注销、等待与激发过程,以及与互斥锁的配合使用。重点介绍了等待与激发的两种方式及其优缺点,同时阐述了在不同线程实现中的性能考虑。

pthread_cond_wait

  多线程的 条件变量  [1]
  条件变量是利用线程间共享的 全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起;另一个线程使"条件成立"(给出条件成立信号)。为了防止竞争,条件变量的使用总是和一个 互斥锁结合在一起。
  1. 创建和注销
  条件变量和互斥锁一样,都有 静态动态两种创建方式,静态方式使用PTHREAD_COND_INITIALIZER 常量,如下:
  pthread_cond_t cond=PTHREAD_COND_INITIALIZER
  动态方式调用 pthread_cond_init()函数,API定义如下:
  int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr)
  尽管POSIX标准中为条件变量定义了属性,但在LinuxThreads中没有实现,因此cond_attr值通常为NULL,且被忽略。
  注销一个条件变量需要调用pthread_cond_destroy(),只有在没有线程在该条件变量上等待的时候才能注销这个条件变量,否则返回EBUSY。因为Linux实现的条件变量没有分配什么资源,所以注销动作只包括检查是否有等待线程。API定义如下:
  int pthread_cond_destroy(pthread_cond_t *cond)
  2. 等待和激发
  int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
  int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime)
  等待条件有两种方式:无条件等待pthread_cond_wait()和计时等待pthread_cond_timedwait(),其中计时等待方式如果在给定时刻前条件没有满足,则返回ETIMEOUT,结束等待,其中abstime以与time() 系统调用相同意义的绝对时间形式出现,0表示 格林尼治时间1970年1月1日0时0分0秒。
  无论哪种等待方式,都必须和一个互斥锁配合,以防止多个线程同时请求pthread_cond_wait()(或pthread_cond_timedwait(),下同)的 竞争条件(Race Condition)。mutex互斥锁必须是普通锁(PTHREAD_MUTEX_TIMED_NP)或者适应锁(PTHREAD_MUTEX_ADAPTIVE_NP),且在调用pthread_cond_wait()前必须由本 线程加锁(pthread_mutex_lock()),而在更新条件 等待队列以前,mutex保持锁定状态,并在线程挂起进入等待前解锁。在条件满足从而离开pthread_cond_wait()之前,mutex将被重新加锁,以与进入pthread_cond_wait()前的加锁动作对应。
  激发条件有两种形式,pthread_cond_signal()激活一个等待该条件的线程,存在多个等待线程时按入队顺序激活其中一个;而pthread_cond_broadcast()则激活所有等待线程。




pthread_cond_signal

  pthread_cond_signal函数的作用是发送一个信号给另外一个正在处于阻塞等待状态的线程,使其脱离阻塞状态,继续执行.如果没有线程处在阻塞等待状态,pthread_cond_signal也会成功返回。
  但使用pthread_cond_signal不会有“惊群现象”产生,他最多只给一个线程发信号。假如有多个线程正在阻塞等待着这个条件变量的话,那么是根据各等待线程优先级的高低确定哪个线程接收到信号开始继续执行。如果各线程优先级相同,则根据等待时间的长短来确定哪个线程获得信号。但无论如何一个pthread_cond_signal调用最多发信一次。
  另外,互斥量的作用一般是用于对某个资源进行互斥性的存取,很多时候是用来保证操作是一个原子性的操作,是不可中断的。
  用法:
  pthread_cond_wait必须放在pthread_mutex_lock和pthread_mutex_unlock之间,因为他要根据共享变量的状态来觉得是否要等待,而为了不永远等待下去所以必须要在lock/unlock队中
  共享变量的状态改变必须遵守lock/unlock的规则
  pthread_cond_signal即可以放在pthread_mutex_lock和pthread_mutex_unlock之间,也可以放在pthread_mutex_lock和pthread_mutex_unlock之后,但是各有有缺点。
  之间:
  pthread_mutex_lock
  xxxxxxx
  pthread_cond_signal
  pthread_mutex_unlock
  缺点:在某下线程的实现中,会造成等待线程从内核中唤醒(由于cond_signal)然后又回到内核空间(因为cond_wait返回后会有原子加锁的行为),所以一来一回会有性能的问题。但是在LinuxThreads或者NPTL里面,就不会有这个问题,因为在Linux 线程中,有两个队列,分别是cond_wait队列和mutex_lock队列, cond_signal只是让线程从cond_wait队列移到mutex_lock队列,而不用返回到用户空间,不会有性能的损耗。
  所以在Linux中推荐使用这种模式。
  之后:
  pthread_mutex_lock
  xxxxxxx
  pthread_mutex_unlock
  pthread_cond_signal
  优点:不会出现之前说的那个潜在的性能损耗,因为在signal之前就已经释放锁了
  缺点:如果unlock和signal之前,有个低优先级的线程正在mutex上等待的话,那么这个低优先级的线程就会抢占高优先级的线程(cond_wait的线程),而这在上面的放中间的模式下是不会出现的。
  所以,在Linux下最好pthread_cond_signal放中间,但从编程规则上说,其他两种都可以


代码下载地址: https://pan.quark.cn/s/bc087ffa872a "测控电路课后习题详解"文件.pdf是一份极具价值的学术资料,其中系统地阐述了测控电路的基础理论、系统构造、核心特性及其实际应用领域。 以下是对该文献的深入解读和系统梳理:1.1测控电路在测控系统中的核心功能测控电路在测控系统的整体架构中扮演着不可或缺的角色。 它承担着对传感器输出信号进行放大、滤除杂音、提取有效信息等关键任务,并且依据测量控制的需求,执行必要的计算、处理变换操作,最终输出能够驱动执行机构运作的指令信号。 测控电路作为测控系统中最具可塑性的部分,具备易于放大信号、转换模式、传输数据以及适应多样化应用场景的优势。 1.2决定测控电路精确度的关键要素影响测控电路精确度的核心要素包括:(1)噪声干扰的存在;(2)失调现象漂移效应,尤其是温度引起的漂移;(3)线性表现保真度水平;(4)输入输出阻抗的特性影响。 在这些要素中,噪声干扰失调漂移(含温度效应)是最为关键的因素,需要给予高度关注。 1.3测控电路的适应性表现测控电路在测控系统中展现出高度的适应性,具体表现在:* 具备选择特定信号、灵活实施各类转换以及进行信号处理运算的能力* 实现模数转换数模转换功能* 在直流交流、电压电流信号之间进行灵活转换* 在幅值、相位、频率脉宽信号等不同参数间进行转换* 实现量程调整功能* 对信号实施多样化的处理运算,如计算平均值、差值、峰值、绝对值,进行求导数、积分运算等,以及实现非线性环节的线性化处理、逻辑判断等操作1.4测量电路输入信号类型对电路结构设计的影响测量电路的输入信号类型对其电路结构设计产生显著影响。 依据传感器的类型差异,输入信号的形态也呈现多样性。 主要可分为...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值