A Little About Digital Audio and Linear PCM

本文详细介绍了数字音频记录中使用最广泛的线性脉冲编码调制(linearPCM)格式,包括采样率、位深度及其对音频质量的影响。此外,还探讨了在不同操作系统(如MacOSX和iOS)上处理线性PCM音频数据的方法,包括转换不同变体和格式之间的音频数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Little About Digital Audio and Linear PCM

Most Core Audio services use and manipulate audio in linear pulse-code-modulated (linear PCM) format, the most common uncompressed digital audio data format. Digital audio recording creates PCM data by measuring an analog (real world) audio signal’s magnitude at regular intervals (the sampling rate) and converting each sample to a numerical value. Standard compact disc (CD) audio uses a sampling rate of 44.1 kHz, with a 16-bit integer describing each sample—constituting the resolution or bit depth.

  • sample is single numerical value for a single channel.

  • frame is a collection of time-coincident samples. For instance, a stereo sound file has two samples per frame, one for the left channel and one for the right channel.

  • packet is a collection of one or more contiguous frames. In linear PCM audio, a packet is always a single frame. In compressed formats, it is typically more. A packet defines the smallest meaningful set of frames for a given audio data format.

In linear PCM audio, a sample value varies linearly with the amplitude of the original signal that it represents. For example, the 16-bit integer samples in standard CD audio allow 65,536 possible values between silence and maximum level. The difference in amplitude from one digital value to the next is always the same.

Core Audio data structures, declared in the CoreAudioTypes.h header file, can describe linear PCM at any sample rate and bit depth. “Audio Data Formats” goes into more detail on this topic.

In Mac OS X, Core Audio expects audio data to be in native-endian, 32-bit floating-point, linear PCM format. You can use Audio Converter Services to translate audio data between different linear PCM variants. You also use these converters to translate between linear PCM and compressed audio formats such as MP3 and Apple Lossless. Core Audio in Mac OS X supplies codecs to translate most common digital audio formats (though it does not supply an encoder for converting to MP3).

iOS uses integer and fixed-point audio data. The result is faster calculations and less battery drain when processing audio. iOS provides a Converter audio unit and includes the interfaces from Audio Converter Services. For details on the so-called canonical audio data formats for iOS and Mac OS X, see “Canonical Audio Data Formats.”

In iOS and Mac OS X, Core Audio supports most common file formats for storing and playing audio data, as described in “iPhone Audio File Formats” and 

资源下载链接为: https://pan.quark.cn/s/67c535f75d4c 在机器人技术中,轨迹规划是实现机器人从一个位置平稳高效移动到另一个位置的核心环节。本资源提供了一套基于 MATLAB 的机器人轨迹规划程序,涵盖了关节空间和笛卡尔空间两种规划方式。MATLAB 是一种强大的数值计算与可视化工具,凭借其灵活易用的特点,常被用于机器人控制算法的开发与仿真。 关节空间轨迹规划主要关注机器人各关节角度的变化,生成从初始配置到目标配置的连续路径。其关键知识点包括: 关节变量:指机器人各关节的旋转角度或伸缩长度。 运动学逆解:通过数学方法从末端执行器的目标位置反推关节变量。 路径平滑:确保关节变量轨迹连续且无抖动,常用方法有 S 型曲线拟合、多项式插值等。 速度和加速度限制:考虑关节的实际物理限制,确保轨迹在允许的动态范围内。 碰撞避免:在规划过程中避免关节与其他物体发生碰撞。 笛卡尔空间轨迹规划直接处理机器人末端执行器在工作空间中的位置和姿态变化,涉及以下内容: 工作空间:机器人可到达的所有三维空间点的集合。 路径规划:在工作空间中找到一条从起点到终点的无碰撞路径。 障碍物表示:采用二维或三维网格、Voronoi 图、Octree 等数据结构表示工作空间中的障碍物。 轨迹生成:通过样条曲线、直线插值等方法生成平滑路径。 实时更新:在规划过程中实时检测并避开新出现的障碍物。 在 MATLAB 中实现上述规划方法,可以借助其内置函数和工具箱: 优化工具箱:用于解决运动学逆解和路径规划中的优化问题。 Simulink:可视化建模环境,适合构建和仿真复杂的控制系统。 ODE 求解器:如 ode45,用于求解机器人动力学方程和轨迹执行过程中的运动学问题。 在实际应用中,通常会结合关节空间和笛卡尔空间的规划方法。先在关节空间生成平滑轨迹,再通过运动学正解将关节轨迹转换为笛卡
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值