#include <iostream>
#include <cstdio>
#define ll long long
using namespace std;
const int Maxn = 1e5 + 10;//线段树操作,但是改变有两种,加和乘,
int p;
ll a[Maxn];
struct Tre {
ll ans, mul, add;
}tre[Maxn * 4];//ans是节点值,mul记录乘法改变的值,add记录加法改变的值void build(int root, int l, int r) {
tre[root].mul = 1;//注意乘法和加法初始化的不同
tre[root].add = 0;
if (l == r) {
tre[root].ans = a[l];
}
else {
int m = l + ((r - l) >> 1);
build(root << 1, l, m);
build((root << 1) | 1, m + 1, r);
tre[root].ans = tre[root << 1].ans + tre[(root << 1) | 1].ans;//pushup
}
tre[root].ans %= p;//答案要求区间和取模,所以可以分开取模再求和再取模
return;
}
void pushdown(int root, int l, int r) {//重点,如何更新数据,因为有两个计算乘法和加法,这里先计算乘法再计算加法,
int m = l + ((r - l) >> 1);
//子节点
tre[root << 1].ans = (tre[root << 1].ans * tre[root].mul + tre[root].add * (m - l + 1)) % p;//先乘法,注意对要加的数add也要一起乘再更新相加
tre[(root << 1) | 1].ans = (tre[(root << 1) | 1].ans * tre[root].mul + tre[root].add * (r - m)) % p;
//标记维护
tre[root << 1].mul = (tre[root << 1].mul * tre[root].mul) % p;//乘法标记和要和下位的一起乘,再模
tre[(root << 1) | 1].mul = (tre[(root << 1) | 1].mul * tre[root].mul) % p;
tre[root << 1].add = (tre[root << 1].add * tre[root].mul + tre[root].add) % p;
tre[(root << 1) | 1].add = (tre[(root << 1) | 1].add * tre[root].mul + tre[root].add) % p;
tre[root].mul = 1;
tre[root].add = 0;
return;
}void update1(int root, int s, int t, int l, int r, ll k) {//乘法
if (r < s || t < l) {
return;
}
if (l <= s && t <= r) {
tre[root].ans = (tre[root].ans * k) % p;
tre[root].mul = (tre[root].mul * k) % p;
tre[root].add = (tre[root].add * k) % p;
return;
}
//假如给出的区间和本区间有交集,但是也有不交叉的部分
//先传递lazytag
pushdown(root, s, t);
int m = s + ((t - s) >> 1);
update1(root << 1, s, m, l, r, k);
update1((root << 1) | 1, m + 1, t, l, r, k);
tre[root].ans = (tre[root << 1].ans + tre[(root << 1) | 1].ans) % p;//pushup
return;
}
void update2(int root, int s, int t, int l, int r, long long k) {//加法
if (r < s || t < l) {
return;
}
if (l <= s && t <= r) {
tre[root].add = (tre[root].add + k) % p;
tre[root].ans = (tre[root].ans + k * (t - s + 1)) % p;
return;
}
pushdown(root, s, t);
int m = s + ((t - s) >> 1);
update2(root << 1, s, m, l, r, k);
update2((root << 1) | 1, m + 1, t, l, r, k);
tre[root].ans = (tre[root << 1].ans + tre[(root << 1) | 1].ans) % p;
return;
}ll query(int root, int s, int t, int l, int r) {
if (r < s || t < l) {
return 0;
}
if (l <= s && t <= r) {
return tre[root].ans;
}
pushdown(root, s, t);
int m = s + ((t - s) >> 1);
return (query(root * 2, s, m, l, r) + query(root * 2 + 1, m + 1, t, l, r)) % p;
}int main() {
int n, m;
scanf("%d%d%d", &n, &m, &p);for (int i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
}build(1, 1, n);
while (m--) {
int op;
scanf("%d", &op);
int x, y;
long long k;
if (op == 1) {
scanf("%d%d%lld", &x, &y, &k);
update1(1, 1, n, x, y, k);
}
else if (op == 2) {
scanf("%d%d%lld", &x, &y, &k);
update2(1, 1, n, x, y, k);
}
else {
scanf("%d%d", &x, &y);
printf("%lld\n", query(1, 1, n, x, y));
}
}
return 0;
}